Covalent radius of fluorine

http://dbpedia.org/resource/Covalent_radius_of_fluorine an entity of type: Software

The covalent radius of fluorine is a measure of the size of a fluorine atom; it is approximated at about 60 picometres. Since fluorine is a relatively small atom with a large electronegativity, its covalent radius is difficult to evaluate. The covalent radius is defined as half the bond lengths between two neutral atoms of the same kind connected with a single bond. By this definition, the covalent radius of F is 71 pm. However, the F-F bond in F2 is abnormally weak and long. Besides, almost all bonds to fluorine are highly polar because of its large electronegativity, so the use of a covalent radius to predict the length of such a bond is inadequate and the bond lengths calculated from these radii are almost always longer than the experimental values. rdf:langString
rdf:langString Covalent radius of fluorine
xsd:integer 7246375
xsd:integer 1082400366
rdf:langString The covalent radius of fluorine is a measure of the size of a fluorine atom; it is approximated at about 60 picometres. Since fluorine is a relatively small atom with a large electronegativity, its covalent radius is difficult to evaluate. The covalent radius is defined as half the bond lengths between two neutral atoms of the same kind connected with a single bond. By this definition, the covalent radius of F is 71 pm. However, the F-F bond in F2 is abnormally weak and long. Besides, almost all bonds to fluorine are highly polar because of its large electronegativity, so the use of a covalent radius to predict the length of such a bond is inadequate and the bond lengths calculated from these radii are almost always longer than the experimental values. Bonds to fluorine have considerable ionic character, a result of its small atomic radius and large electronegativity. Therefore, the bond length of F is influenced by its ionic radius, the size of ions in an ionic crystal, which is about 133 pm for fluoride ions. The ionic radius of fluoride is much larger than its covalent radius. When F becomes F−, it gains one electron but has the same number of protons, meaning the attraction of the protons to the electrons is weaker, and the radius is larger.
xsd:nonNegativeInteger 9168

data from the linked data cloud