Confluent hypergeometric function
http://dbpedia.org/resource/Confluent_hypergeometric_function an entity of type: Software
在特殊函数中,合流超几何函数(confluent hypergeometric function)定义为合流超几何方程的解。它是高斯超几何函数的极限情形,相当于超几何方程中的两个正则奇点 1 和 ∞ 合流为一个非正则奇点 ∞,因而得名。 根据所选择的参变量与宗量的不同,合流超几何函数有多种标准形式,常见的有:
* Kummer 函数(第一类合流超几何函数)M(a,b,z) 是 Kummer 方程的解。注意有另一个相异且无关的函数也被称为 Kummer 函数;
* Tricomi 函数(第二类合流超几何函数)U(a,b,z)是 Kummer 方程的另一个线性无关的解,有时会写成 Ψ(a,b,z);
* 惠泰克函数 是惠泰克方程的解,惠泰克方程里的参数与 Kummer 方程的参数所对应的李代数参数相关;
rdf:langString
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:
rdf:langString
La fonction hypergéométrique confluente (ou fonction de Kummer) est :où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par :
rdf:langString
In matematica, l'equazione ipergeometrica confluente o equazione di Kummer, da Ernst Kummer, è un'equazione differenziale lineare del secondo ordine ottenuta a partire dall'equazione di Papperitz-Riemann facendo confluire due singolarità in un solo punto; è strettamente legata con l'equazione ipergeometrica e le sue soluzioni, le funzioni ipergeometriche. Ciascuna delle soluzioni dell'equazione ipergeometrica confluente è analogamente chiamata funzione ipergeometrica confluente.
rdf:langString
rdf:langString
Confluent hypergeometric function
rdf:langString
Fonction hypergéométrique confluente
rdf:langString
Equazione ipergeometrica confluente
rdf:langString
合流超几何函数
xsd:integer
1516095
xsd:integer
1107410865
rdf:langString
Francesco Tricomi
rdf:langString
Francesco
rdf:langString
E.A.
rdf:langString
Adri B. Olde
xsd:integer
13
rdf:langString
Chistova
rdf:langString
Daalhuis
rdf:langString
Tricomi
rdf:langString
Confluent hypergeometric function
xsd:integer
1947
rdf:langString
In mathematics, a confluent hypergeometric function is a solution of a confluent hypergeometric equation, which is a degenerate form of a hypergeometric differential equation where two of the three regular singularities merge into an irregular singularity. The term confluent refers to the merging of singular points of families of differential equations; confluere is Latin for "to flow together". There are several common standard forms of confluent hypergeometric functions:
* Kummer's (confluent hypergeometric) function M(a, b, z), introduced by Kummer, is a solution to Kummer's differential equation. This is also known as the confluent hypergeometric function of the first kind. There is a different and unrelated Kummer's function bearing the same name.
* Tricomi's (confluent hypergeometric) function U(a, b, z) introduced by Francesco Tricomi, sometimes denoted by Ψ(a; b; z), is another solution to Kummer's equation. This is also known as the confluent hypergeometric function of the second kind.
* Whittaker functions (for Edmund Taylor Whittaker) are solutions to Whittaker's equation.
* Coulomb wave functions are solutions to the Coulomb wave equation. The Kummer functions, Whittaker functions, and Coulomb wave functions are essentially the same, and differ from each other only by elementary functions and change of variables.
rdf:langString
La fonction hypergéométrique confluente (ou fonction de Kummer) est :où désigne le symbole de Pochhammer. Elle est solution de l'équation différentielle d'ordre deux, appelée équation de Kummer : Elle est aussi définie par : Les fonctions de Bessel, la fonction gamma incomplète, les fonctions génératrices des moments des distributions bêta et bêta prime, les fonctions cylindre parabolique ou encore les polynômes d'Hermite et les polynômes de Laguerre peuvent être représentés à l'aide de fonctions hypergéométriques confluentes (cf. Slater). Whittaker a introduit des fonctions et qui sont également liées aux fonctions hypergéométriques confluentes.
rdf:langString
In matematica, l'equazione ipergeometrica confluente o equazione di Kummer, da Ernst Kummer, è un'equazione differenziale lineare del secondo ordine ottenuta a partire dall'equazione di Papperitz-Riemann facendo confluire due singolarità in un solo punto; è strettamente legata con l'equazione ipergeometrica e le sue soluzioni, le funzioni ipergeometriche. Ciascuna delle soluzioni dell'equazione ipergeometrica confluente è analogamente chiamata funzione ipergeometrica confluente. Si individuano in particolare due soluzioni indipendenti, fornite da serie ipergeometriche: la prima è denotata con e viene detta funzione ipergeometrica di Kummer, mentre la seconda è denotata con e chiamata funzione di Whittaker, in riferimento a Edmund Taylor Whittaker, oppure anche funzione ipergeometrica confluente di Tricomi (da Francesco Tricomi) o funzione ipergeometrica di Gordon-Tricomi. Da notare che per si intende invece una funzione speciale non collegata alle precedenti.
rdf:langString
在特殊函数中,合流超几何函数(confluent hypergeometric function)定义为合流超几何方程的解。它是高斯超几何函数的极限情形,相当于超几何方程中的两个正则奇点 1 和 ∞ 合流为一个非正则奇点 ∞,因而得名。 根据所选择的参变量与宗量的不同,合流超几何函数有多种标准形式,常见的有:
* Kummer 函数(第一类合流超几何函数)M(a,b,z) 是 Kummer 方程的解。注意有另一个相异且无关的函数也被称为 Kummer 函数;
* Tricomi 函数(第二类合流超几何函数)U(a,b,z)是 Kummer 方程的另一个线性无关的解,有时会写成 Ψ(a,b,z);
* 惠泰克函数 是惠泰克方程的解,惠泰克方程里的参数与 Kummer 方程的参数所对应的李代数参数相关;
xsd:nonNegativeInteger
24010