Confidence interval

http://dbpedia.org/resource/Confidence_interval an entity of type: Thing

En statistiko, konfidintervalo estas intervalo, en kiu stimata parametro kuŝas je specita probablo. Tia uzo de konfidintervaloj nomiĝas intervala stimo. rdf:langString
Dalam statistika, selang kepercayaan (bahasa Inggris: confidence interval, CI) adalah sebuah interval antara dua angka, di mana dipercaya nilai parameter sebuah populasi terletak di dalam interval tersebut. Pendugaan parameter diwujudkan dalam pembentukan selang kepercayaan, karena hampir tidak pernah ditemukan nilai statistik tepat sama dengan nilai parameter. Dalam praktik sehari-hari, kebanyakan selang kepercayaan dinyatakan dalam level 95% (Zar 1984). rdf:langString
통계학에서 신뢰 구간(信賴區間, 영어: confidence interval)은 모수가 어느 범위 안에 있는지를 확률적으로 보여주는 방법이다. 신뢰 구간은 보통 표본에서 산출된 통계와 함께 제공된다. 예를 들어, "신뢰수준 95%에서 투표자의 35%~45%가 A후보를 지지하고 있다."라고 할 때 95%는 신뢰수준이고 35%~45%는 신뢰구간이며 θ는 A후보의 지지율이다. rdf:langString
Przedział ufności – podstawowe narzędzie estymacji przedziałowej. Pojęcie to zostało wprowadzone do statystyki przez matematyka polskiego pochodzenia Jerzego Spławę-Neymana. Występuje w wielu wariantach, w klasycznym wąskim rozumieniu opiera się o błąd standardowy. Szczególny przypadek przedziału ufności w badaniach ankietowych jest zwyczajowo określany marginesem błędu. rdf:langString
Довери́тельный интерва́л — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью. Доверительным называется интервал, в который попадают измеренные в эксперименте значения, соответствующие доверительной вероятности. Метод доверительных интервалов разработал американский статистик Ежи Нейман, исходя из идей английского статистика Рональда Фишера. rdf:langString
在统计学中,一个概率样本的置信区间(英語:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知母數值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。 置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。 rdf:langString
في الإحصاء، مجال الثقة (بالانكليزية: Confidence Interval) هو مجال عددي يُتوقع أن يحتوي على القيمة الحقيقية لمَعلَمة إحصائية يراد معرفتها لمجتمع إحصائي ما. يترافق مفهوم مجال الثقة مع مفهوم آخر هو مستوى الثقة والذي يمكن شرحه كالتالي: لنقل أننا نريد تقدير قيمة مَعلمة ما لمجتمع إحصائي وقمنا لهذا الغرض بتكرار تجربة إحصائية على العديد من العينات العشوائية المأخوذة من المجتمع ومن ثم قمنا بحساب مجال ثقة لقيمة المَعلَمة المدروسة من كل من هذه العينات. يُطلق على نسبة عدد مجالات الثقة التي حوت على القيمة الحقيقية للمعلمة اسم مستوى الثقة. rdf:langString
En estadística matemàtica, un interval de confiança d'un paràmetre poblacional (per exemple, la mitjana poblacional) és un interval numèric construït a partir d'una mostra, el qual conté aquest paràmetre amb determinada probabilitat (per exemple, el 95 %) que s'anomena el nivell de confiança. El nivell de confiança desitjat és establert per l'investigador (no és determinat per les dades). És molt habitual utilitzar el nivell de confiança del 95%, no obstant això, es poden utilitzar altres nivells de confiança, per exemple, el 90% o el 99%. rdf:langString
Interval spolehlivosti neboli konfidenční interval je ve statistice typ intervalového odhadu neznámého parametru. Pro jeho stanovení je potřeba předem určit konfidenční hladinu (nejčastěji se používá 95 %, což je doplněk běžně používané 5 % do sta procent). Konfidenční intervaly se poté stanovují tak, aby očekávaný podíl těch nezávisle stanovených intervalů, ve kterých se vyskytuje skutečná hodnota parametru, byl roven konfidenční hladině. V praxi se přitom využívá odhad standardní chyby sledovaného ukazatele. rdf:langString
Ein Konfidenzintervall, kurz KI, (auch Vertrauensintervall, Vertrauensbereich oder Erwartungsbereich genannt) ist in der Statistik ein Intervall, das die Präzision der Lageschätzung eines Parameters (z. B. eines Mittelwerts) angeben soll. Das Konfidenzintervall gibt den Bereich an, der mit einer gewissen Wahrscheinlichkeit (der Überdeckungswahrscheinlichkeit) den Parameter einer Verteilung einer Zufallsvariablen einschließt.Ein häufig verwendetes Konfidenzniveau ist 95 %. Abzugrenzen von Konfidenzintervallen sind Prognoseintervalle sowie . rdf:langString
In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of corresponding CIs that contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value. rdf:langString
Estatistikan, konfiantza-tarte edo tarte-zenbatespena balio finko, zehatz eta ezezagun bati buruz tarte baten bitartez egiten den zenbatespena da, tarteak duen konfiantza mailarekin batera, balio horri buruzko informazioa ematen duten datuetan oinarrituta. rdf:langString
En estadística, se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido respecto de un parámetro poblacional con un determinado nivel de confianza. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. El nivel de confianza representa el porcentaje de intervalos que tomados de 100 muestras independientes distintas contienen en realidad el valor desconocido. En estas circunstancias, es el llamado error aleatorio o nivel de significancia, esto es, el número de intervalos sobre 100 que no contienen el valor​ rdf:langString
En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire. En particulier, cette notion permet de définir une marge d'erreur entre les résultats d'un sondage et un relevé exhaustif de la population totale. rdf:langString
信頼区間(しんらいくかん、英: Confidence interval, CI)とは、統計学で母集団の真の値(母平均等)が含まれることが、かなり確信 (confident) できる数値範囲のことである。例えば95%CIとは、信頼区間を計算するために用いた数学的モデルが有意水準α = 0.05の検定で棄却されないパラメーターの範囲を指す。真の値は未測定であっても確率変数ではなく、特定の区間に含まれるか含まれないかは確定している。 数学的には、 Θ 上の関数 g : Θ → R が母数 θ ∈ Θ でとる値 g(θ) を統計的に推定するために用いられる区間をいう。実数 0 < α < 1 と(観測できない)母数 θ により定まる確率分布 P = Pθ をもつ母集団からの標本 X1, …, Xn に関する統計量 a, b が不等式 を満たすとき、閉区間 [a, b] を g(θ) の 100(1 − α)% 信頼区間という。値 1 − α(または 100(1 − α)%)は、信頼水準(英: confidence level)または信頼係数(英: confidence coefficient)と呼ばれ、慣習的には95%や99%(つまり α = 0.05, 0.01)などの数値を用いる。これを ○% CI [a, b] と表記することもある。 rdf:langString
In statistica, quando si stima un parametro, è spesso insufficiente individuare un singolo valore: è opportuno allora accompagnare la stima con un intervallo di valori probabili per quel parametro, definito intervallo di confidenza (o intervallo di fiducia, o intervallo fiduciario). Va osservato che l'espressione “intervallo di confidenza”, ormai entrata irreversibilmente nell'uso italiano, è una traduzione approssimativa dell'espressione inglese confidence interval, nella quale però confidence sta per fiducia. rdf:langString
Een betrouwbaarheidsinterval is in de statistiek een intervalschatting voor een parameter. In tegenstelling tot een puntschatting geeft een betrouwbaarheidsinterval een heel interval van betrouwbare waarden (schattingen) van de parameter. Een betrouwbaarheidsinterval is een realisatie van een stochastisch interval, dat overigens zelf ook met betrouwbaarheidsinterval wordt aangeduid. De ondergrens en de bovengrens van het stochastische interval zijn stochastische variabelen, die dus bij elke herhaling van het experiment een (mogelijk) andere waarde aannemen. De te schatten parameter daarentegen heeft een, weliswaar onbekende, maar vaste waarde. Van alle realisaties van het interval zullen sommige de parameter wel bevatten, maar sommige ook niet. Hoe groter de betrouwbaarheid, hoe "vaker" he rdf:langString
Em estatística, intervalo de confiança (IC) é um tipo de estimativa por intervalo de um parâmetro populacional desconhecido. Introduzido na estatística por Jerzy Neyman em 1937, é um intervalo observado (calculado a partir de observações) que pode variar de amostra para amostra e que com dada frequência (nível de confiança) inclui o parâmetro de interesse real não observável. rdf:langString
Konfidensintervall är inom matematisk statistik en skattning av osäkerheten associerad med skattningar av populationsparametrar som har tagits fram med hjälp av stickprovsdata. Konfidensintervallet bestäms för en given konfidensgrad. Exempelvis kan ett konfidensintervall bestämmas för konfidensgraden 95 % vilken bestäms i förväg av användaren. rdf:langString
Довірчий інтервал (англ. confidence interval, CI) — у математичній статистиці є типом , яку обчислюють за даними спостереження, і яка покриває невідомий статистичний параметр із заданою надійністю. Це інтервал, у межах якого з заданою довірчою імовірністю можна чекати значення оцінюваної (шуканої) випадкової величини. Застосовують для повнішої оцінки точності порівняно з точковою оцінкою. Метод довірчих інтервалів розробив американський статистик Єжи Нейман, виходячи з ідей англійського статистика Рональда Фішера. rdf:langString
rdf:langString مجال ثقة
rdf:langString Interval de confiança
rdf:langString Interval spolehlivosti
rdf:langString Konfidenzintervall
rdf:langString Konfidintervalo
rdf:langString Intervalo de confianza
rdf:langString Confidence interval
rdf:langString Konfiantza-tarte
rdf:langString Selang kepercayaan
rdf:langString Intervalle de confiance
rdf:langString Intervallo di confidenza
rdf:langString 신뢰 구간
rdf:langString 信頼区間
rdf:langString Przedział ufności
rdf:langString Betrouwbaarheidsinterval
rdf:langString Доверительный интервал
rdf:langString Intervalo de confiança
rdf:langString Konfidensintervall
rdf:langString Довірчий інтервал
rdf:langString 信賴區間
xsd:integer 280911
xsd:integer 1122573625
rdf:langString p/c024620
rdf:langString  210
rdf:langString ama
rdf:langString Confidence Interval
rdf:langString Confidence estimation
rdf:langString ConfidenceInterval
rdf:langString في الإحصاء، مجال الثقة (بالانكليزية: Confidence Interval) هو مجال عددي يُتوقع أن يحتوي على القيمة الحقيقية لمَعلَمة إحصائية يراد معرفتها لمجتمع إحصائي ما. يترافق مفهوم مجال الثقة مع مفهوم آخر هو مستوى الثقة والذي يمكن شرحه كالتالي: لنقل أننا نريد تقدير قيمة مَعلمة ما لمجتمع إحصائي وقمنا لهذا الغرض بتكرار تجربة إحصائية على العديد من العينات العشوائية المأخوذة من المجتمع ومن ثم قمنا بحساب مجال ثقة لقيمة المَعلَمة المدروسة من كل من هذه العينات. يُطلق على نسبة عدد مجالات الثقة التي حوت على القيمة الحقيقية للمعلمة اسم مستوى الثقة. عندما نقول أننا واثقون بنسبة 99% (أي أن مستوى الثقة قدره 99%) بأن قيمة المعلمة المنشودة (المتوسط الحسابي مثلا) تقع ضمن مجال الثقة الذي حسبناه من عينة عشوائية فإن هذا يكافئ قولنا بأن 99% من كل مجالات الثقة التي يمكن حسابها من عينات عشوائية من المجتمع الإحصائي المدروس ستحتوي على القيمة الحقيقية للمعلمة. لذا فإنه من الخطأ القول أن مستوى ثقة بقيمة 99% يعني بأن هنالك احتمال 99% بوقوع القيمة الحقيقية للمعلمة ضمن مجال الثقة المحسوب. الصحيح هو أن القيمة الحقيقية للمعلمة إما أن تقع ضمن من مجال الثقة أو أنها لا تقع ضمنه. كلمة الثقة هنا ليس لها علاقة بالاحتمالية وإنما بتكرارية احتواء مجالات الثقة المحسوبة من العديد من العينات على القيمة الحقيقية للمعلمة. (انظر الشكل الجانبي). يتم تحديد مستوى الثقة من قِبَل الباحث نفسه وبالتالي هو ليس رقما مستنبطا من بيانات العينة. جرت العادة في أغلب الأبحاث أن يتم استخدام مجالات ثقة بمستوى ثقة قدره 95% ولكن يمكن أن يتم أيضا حسابها بمستويات ثقة أخرى مثل 99% و90%. تجدر الإشارة إلى أن حجم مجال الثقة يتأثر بعدة عوامل مثل حجم العينة المدروسة وتشتت المجتمع الإحصائي. يعتبر جيرزي نيمان هو أول من أتى بفكرة مجالات الثقة في الإحصاء وذلك في ورقة بحثية نشرت في العام 1937.
rdf:langString En estadística matemàtica, un interval de confiança d'un paràmetre poblacional (per exemple, la mitjana poblacional) és un interval numèric construït a partir d'una mostra, el qual conté aquest paràmetre amb determinada probabilitat (per exemple, el 95 %) que s'anomena el nivell de confiança. El nivell de confiança desitjat és establert per l'investigador (no és determinat per les dades). És molt habitual utilitzar el nivell de confiança del 95%, no obstant això, es poden utilitzar altres nivells de confiança, per exemple, el 90% o el 99%. En contrast amb un estimador puntual d'un paràmetre, on es dona un únic nombre, en un interval de confiança, tal com hem dit, es proporciona tot un rang de nombres entre dos valors, i a més, es quantifica en termes probabilístics la confiança que es té en què aquest interval contindrà l'autèntic valor del paràmetre. Quan es proporciona un interval de confiança es suposa que les dades poblacionals tenen determinades característiques, més o menys exigents; en els casos més habituals es suposa que ho fan mitjançant la distribució normal. La construcció d'intervals de confiança també es pot realitzar usant el teorema central del límit, la desigualtat de Txebixev, o altres tècniques. Els intervals de confiança intervenen en pràcticament totes les àrees de l'estadística; en aquest article ens limitarem a considerar alguns dels casos més habituals, concretament, els intervals de confiança per a la mitjana d'una població normal amb desviació típica coneguda o no, i l'interval de confiança per a una proporció en una població de mida gran.
rdf:langString Interval spolehlivosti neboli konfidenční interval je ve statistice typ intervalového odhadu neznámého parametru. Pro jeho stanovení je potřeba předem určit konfidenční hladinu (nejčastěji se používá 95 %, což je doplněk běžně používané 5 % do sta procent). Konfidenční intervaly se poté stanovují tak, aby očekávaný podíl těch nezávisle stanovených intervalů, ve kterých se vyskytuje skutečná hodnota parametru, byl roven konfidenční hladině. V praxi se přitom využívá odhad standardní chyby sledovaného ukazatele. Používáme-li konfidenční hladinu 95 %, znamená to, že změříme-li 100 nezávislých datových souborů, na nichž odhadujeme neznámý parametr intervalem spolehlivosti, tak zhruba 95 intervalů bude hledaný parametr obsahovat a zhruba pět nikoli (viz obrázek). To se někdy vyjadřuje zjednodušeným tvrzením, že „neznámý parametr leží v intervalu spolehlivosti s 95% pravděpodobností“, což však není z hlediska klasické „frekventistické“ teorie pravděpodobnosti korektní, jelikož po stanovení intervalu spolehlivosti neznámý parametr buď v tomto intervalu leží, anebo neleží, nelze však hovořit o pravděpodobnosti u jevu, který již nastal nebo nenastal. Podobný výrok však lze použít u analogických bayesovských intervalových odhadů zvaných , protože bayesovská subjektivní interpretace pravděpodobnosti připouští, abychom mluvili o pravděpodobnosti jevu, který už nastal, ale není nám přesně známo, co se stalo. Koncept intervalových odhadů a intervalů spolehlivosti definoval Jerzy Neyman roku 1937.
rdf:langString Ein Konfidenzintervall, kurz KI, (auch Vertrauensintervall, Vertrauensbereich oder Erwartungsbereich genannt) ist in der Statistik ein Intervall, das die Präzision der Lageschätzung eines Parameters (z. B. eines Mittelwerts) angeben soll. Das Konfidenzintervall gibt den Bereich an, der mit einer gewissen Wahrscheinlichkeit (der Überdeckungswahrscheinlichkeit) den Parameter einer Verteilung einer Zufallsvariablen einschließt.Ein häufig verwendetes Konfidenzniveau ist 95 %. Die häufig anzutreffende Formulierung, dass der wahre Wert mit 95 % Wahrscheinlichkeit im für die vorliegende Stichprobe berechneten Konfidenzintervall liegt, ist streng genommen nicht korrekt, da der wahre Wert keine Zufallsgröße, nicht stochastisch ist. Stochastisch sind vielmehr die obere und untere Grenze des Konfidenzintervalls. Folglich lautet die korrekte Formulierung: Bei der Berechnung eines Konfidenzintervalls mit einem bestimmten Schätzverfahren enthält es den wahren Wert mit 95 % Wahrscheinlichkeit. Es handelt sich nicht um eine Eigenschaft des Intervalls, sondern des Verfahrens. Wird es für viele Stichproben aus derselben Grundgesamtheit wiederholt, so sollte es Konfidenzintervalle liefern, die den wahren Wert näherungsweise mit einer dem Konfidenzniveau entsprechenden relativen Häufigkeit überdecken. Das Schätzen von Parametern mit Hilfe von Konfidenzintervallen wird Intervallschätzung genannt, die entsprechende Schätzfunktion ein Bereichs- oder Intervallschätzer. Ein Vorteil gegenüber Punktschätzern ist, dass man an einem Konfidenzintervall direkt die Signifikanz ablesen kann: ein für ein vorgegebenes Konfidenzniveau breites Intervall weist auf einen geringen Stichprobenumfang oder auf eine starke Variabilität in der Grundgesamtheit hin. Abzugrenzen von Konfidenzintervallen sind Prognoseintervalle sowie .
rdf:langString En statistiko, konfidintervalo estas intervalo, en kiu stimata parametro kuŝas je specita probablo. Tia uzo de konfidintervaloj nomiĝas intervala stimo.
rdf:langString In frequentist statistics, a confidence interval (CI) is a range of estimates for an unknown parameter. A confidence interval is computed at a designated confidence level; the 95% confidence level is most common, but other levels, such as 90% or 99%, are sometimes used. The confidence level represents the long-run proportion of corresponding CIs that contain the true value of the parameter. For example, out of all intervals computed at the 95% level, 95% of them should contain the parameter's true value. Factors affecting the width of the CI include the confidence level, the sample size, and the variability in the sample. All else being the same, a larger sample would produce a narrower confidence interval. Likewise, greater variability in the sample produces a wider confidence interval, and a higher confidence level would demand a wider confidence interval.
rdf:langString En estadística, se llama intervalo de confianza a un par o varios pares de números entre los cuales se estima que estará cierto valor desconocido respecto de un parámetro poblacional con un determinado nivel de confianza. Formalmente, estos números determinan un intervalo, que se calcula a partir de datos de una muestra, y el valor desconocido es un parámetro poblacional. El nivel de confianza representa el porcentaje de intervalos que tomados de 100 muestras independientes distintas contienen en realidad el valor desconocido. En estas circunstancias, es el llamado error aleatorio o nivel de significancia, esto es, el número de intervalos sobre 100 que no contienen el valor​ El nivel de confianza y la amplitud del intervalo varían conjuntamente, de forma que un intervalo más amplio tendrá más probabilidad de acierto (mayor nivel de confianza), mientras que para un intervalo más pequeño, que ofrece una estimación más precisa, aumenta su probabilidad de error. Para la construcción de un determinado intervalo de confianza es necesario conocer la distribución teórica que sigue el parámetro a estimar, θ.​ Es habitual que el parámetro presente una distribución normal. También pueden construirse intervalos de confianza con la desigualdad de Chebyshev.
rdf:langString Estatistikan, konfiantza-tarte edo tarte-zenbatespena balio finko, zehatz eta ezezagun bati buruz tarte baten bitartez egiten den zenbatespena da, tarteak duen konfiantza mailarekin batera, balio horri buruzko informazioa ematen duten datuetan oinarrituta. Adibidez, Gipuzkoako langabetuen kopuruari buruzko konfiantza-tarte bat eratzeko, lagin bat osatu eta hainbat pertsonari inkesta bat egiten zaie. Pertsona horietan dauden langabetuen proportzioan oinarrituta, langabetuak %10 direla zenbatesten bada, egiten ari da; puntu zenbatespenek, ordea, badute eragozpen garrantzitsua bat: ez dute zehazten emaitza estatistikoetan egoten den neurririk. Konfiantza-tarteek, ordea, puntu zenbatespenen errorearen neurri bat, errore horren konfiantzarekin batera, zehatzen dute. Horrela, konfiantza-tarte batek langabetu kopurua %9-%11 (%10±%1) tartean %90eko konfiantzaz baieztatuko luke, esaterako. Tarte horretan, zenbatespenaren errorea ±%1 (±0.01) da eta konfiantza %90. Konfiantza-tarteak parametroak zenbatesteko erabiltzen dira. Horretarako, zenbatesle bat aukeratu eta zenbateslearen lagin-banaketa hartuko dira oinarritzat tartea zehazteko. Ezarritako konfiantza-maila adierazten duen probabilitatea adierazten duen probabilitate-tartea osatzen da lagin banaketan, zenbateslearen balioa zehaztuz, eta hortik parametroaren balioa bakanduko da. Zenbateslearen lagin-banaketa ezaguna ez denean, badira bestelako prozedurak tarte osatzeko; adibidez, Txebixeven ezberdintza erabil daiteke zenbateslearen batezbestekoa eta bariantza soilik ezagunak direnean. Konfiantza-tarteak eratzeko prozedura orokor horretaz haraindi, populazio mota edo aukeratutako eredua nolakoa den, zenbatetsi beharreko parametroa zein den eta beste parametroak ezagunak diren edo ez, konfiantza-tarteak eratzeko azken formulak ezberdinak dira beti. Horrela, konfiantza-tarteak eratzerakoan, egoera arruntenak jasotzen dituen formula-bildumara jo behar izaten da.
rdf:langString En mathématiques, plus précisément en théorie des probabilités et en statistiques, un intervalle de confiance encadre une valeur réelle que l’on cherche à estimer à l’aide de mesures prises par un procédé aléatoire. En particulier, cette notion permet de définir une marge d'erreur entre les résultats d'un sondage et un relevé exhaustif de la population totale. Un intervalle de confiance doit être associé à un niveau, en général sous la forme d’un pourcentage, qui minore la probabilité que l'intervalle contienne la valeur à estimer. Par exemple, un sondage auprès de 1000 personnes sur une question fermée (à laquelle on ne peut répondre que par « oui » ou par « non »), est valable à plus ou moins environ 3 points de pourcentage, au niveau de 95 % (c’est-à-dire que cette marge de 3 points est erronée moins d’une fois sur 20). Pour obtenir un intervalle plus réduit, donc plus précis, sans changer le nombre de sondés, il faut accepter un niveau plus faible, donc un plus grand risque de se tromper. Au contraire, pour réduire le risque d’erreur, on peut élargir l’intervalle. Les intervalles de confiance sont souvent élaborés à partir d’un échantillon, c’est-à-dire une série de mesures indépendantes sur une population, notamment pour estimer des indicateurs statistiques comme la moyenne, la médiane ou la variance. Mathématiquement, un intervalle de confiance est aléatoire : il est modélisé par un couple de variables aléatoires qui encadrent un paramètre réel. Attention, il ne doit pas être confondu avec l'intervalle de fluctuation, qui est déterminé par le paramètre et encadre une variable aléatoire. Mais c’est précisément en renversant les inégalités d’un intervalle de fluctuation, issu du théorème central limite ou de l’inégalité de Bienaymé-Tchebychev, que l’on peut obtenir l’expression d’un intervalle de confiance, comme celui qui estime l’espérance d’une loi à partir de la moyenne empirique et d’une majoration de l’écart type.
rdf:langString Dalam statistika, selang kepercayaan (bahasa Inggris: confidence interval, CI) adalah sebuah interval antara dua angka, di mana dipercaya nilai parameter sebuah populasi terletak di dalam interval tersebut. Pendugaan parameter diwujudkan dalam pembentukan selang kepercayaan, karena hampir tidak pernah ditemukan nilai statistik tepat sama dengan nilai parameter. Dalam praktik sehari-hari, kebanyakan selang kepercayaan dinyatakan dalam level 95% (Zar 1984).
rdf:langString In statistica, quando si stima un parametro, è spesso insufficiente individuare un singolo valore: è opportuno allora accompagnare la stima con un intervallo di valori probabili per quel parametro, definito intervallo di confidenza (o intervallo di fiducia, o intervallo fiduciario). Va osservato che l'espressione “intervallo di confidenza”, ormai entrata irreversibilmente nell'uso italiano, è una traduzione approssimativa dell'espressione inglese confidence interval, nella quale però confidence sta per fiducia. Se e sono variabili casuali con distribuzioni di probabilità che dipendono da qualche parametro e (dove è un numero tra 0 e 1), allora l'intervallo casuale , calcolato sul campione osservato, è un intervallo di confidenza al per . I valori estremi dell'intervallo di confidenza si chiamano limiti di confidenza. A questo intervallo di confidenza si associa quindi un valore di probabilità cumulativa che caratterizza, indirettamente in termini di probabilità, la sua ampiezza rispetto ai valori massimi assumibili dalla variabile aleatoria. Cioè il valore di probabilità cumulativa indica la probabilità che l'evento casuale descritto dalla variabile aleatoria cada all'interno di suddetto intervallo di confidenza, graficamente pari all'area sottesa dalla curva di distribuzione di probabilità della variabile aleatoria nell'intervallo considerato. È bene non confondere l'intervallo di confidenza con la probabilità. Perciò l'espressione "vi è un livello di confidenza del 95% che sia nell'intervallo", non indica la probabilità che cada nell'intervallo, in quanto non è una variabile aleatoria, ma indica che nel 95% dei casi in cui questa tecnica viene adottata, questa produce un intervallo che contiene il valore vero di .
rdf:langString 통계학에서 신뢰 구간(信賴區間, 영어: confidence interval)은 모수가 어느 범위 안에 있는지를 확률적으로 보여주는 방법이다. 신뢰 구간은 보통 표본에서 산출된 통계와 함께 제공된다. 예를 들어, "신뢰수준 95%에서 투표자의 35%~45%가 A후보를 지지하고 있다."라고 할 때 95%는 신뢰수준이고 35%~45%는 신뢰구간이며 θ는 A후보의 지지율이다.
rdf:langString 信頼区間(しんらいくかん、英: Confidence interval, CI)とは、統計学で母集団の真の値(母平均等)が含まれることが、かなり確信 (confident) できる数値範囲のことである。例えば95%CIとは、信頼区間を計算するために用いた数学的モデルが有意水準α = 0.05の検定で棄却されないパラメーターの範囲を指す。真の値は未測定であっても確率変数ではなく、特定の区間に含まれるか含まれないかは確定している。 数学的には、 Θ 上の関数 g : Θ → R が母数 θ ∈ Θ でとる値 g(θ) を統計的に推定するために用いられる区間をいう。実数 0 < α < 1 と(観測できない)母数 θ により定まる確率分布 P = Pθ をもつ母集団からの標本 X1, …, Xn に関する統計量 a, b が不等式 を満たすとき、閉区間 [a, b] を g(θ) の 100(1 − α)% 信頼区間という。値 1 − α(または 100(1 − α)%)は、信頼水準(英: confidence level)または信頼係数(英: confidence coefficient)と呼ばれ、慣習的には95%や99%(つまり α = 0.05, 0.01)などの数値を用いる。これを ○% CI [a, b] と表記することもある。 例えば「信頼水準95%で、投票者の35%から45%がA候補を支持している」といったとき、95%というのが信頼水準で、35%から45%というのが信頼区間、g(θ) に当たるのはA候補の支持率である。 2019年には科学者800人超が『Nature』に署名を掲載し、誤って使われていることも多い「統計的有意性」を使うのをやめて信頼区間を互換区間(compatible interval、調和区間、適合区間、非矛盾区間)という言葉に言い換えて使用すべきだとされた。
rdf:langString Een betrouwbaarheidsinterval is in de statistiek een intervalschatting voor een parameter. In tegenstelling tot een puntschatting geeft een betrouwbaarheidsinterval een heel interval van betrouwbare waarden (schattingen) van de parameter. Een betrouwbaarheidsinterval is een realisatie van een stochastisch interval, dat overigens zelf ook met betrouwbaarheidsinterval wordt aangeduid. De ondergrens en de bovengrens van het stochastische interval zijn stochastische variabelen, die dus bij elke herhaling van het experiment een (mogelijk) andere waarde aannemen. De te schatten parameter daarentegen heeft een, weliswaar onbekende, maar vaste waarde. Van alle realisaties van het interval zullen sommige de parameter wel bevatten, maar sommige ook niet. Hoe groter de betrouwbaarheid, hoe "vaker" het interval de parameter bevat. De kans dat een waargenomen interval de parameter bevat, heet de betrouwbaarheid van het interval. De onder- en de bovengrens worden berekend uit de steekproefgegevens, en wel zo dat er een sterk vermoeden is dat de echte waarde van de populatieparameter zich ertussen bevindt.
rdf:langString Przedział ufności – podstawowe narzędzie estymacji przedziałowej. Pojęcie to zostało wprowadzone do statystyki przez matematyka polskiego pochodzenia Jerzego Spławę-Neymana. Występuje w wielu wariantach, w klasycznym wąskim rozumieniu opiera się o błąd standardowy. Szczególny przypadek przedziału ufności w badaniach ankietowych jest zwyczajowo określany marginesem błędu.
rdf:langString Konfidensintervall är inom matematisk statistik en skattning av osäkerheten associerad med skattningar av populationsparametrar som har tagits fram med hjälp av stickprovsdata. Konfidensintervallet bestäms för en given konfidensgrad. Exempelvis kan ett konfidensintervall bestämmas för konfidensgraden 95 % vilken bestäms i förväg av användaren. För att förstå innebörden av det som konfidensintervallet anger, betrakta en population för vilken man vill skatta någon förbestämd parameter utifrån stickprovsdata. Den givna populationen kommer att samplas upprepade gånger, varpå intervallskattningar för den givna parametern bestäms. Då är konfidensintervallet det intervall som kommer att innesluta populationsparametern för den andel av samplingarna som bestäms av konfidensgraden. Exempelvis om konfidensgraden är 95 % kommer konfidensintervallet innesluta populationsparametern 95 % av samplingarna. Ett ensidigt konfidensintervall kommer att begränsa populationsparametern från ett håll, antingen från ovanifrån eller underifrån. Detta erbjuder alltså antingen en övre eller undre begränsning för populationsparameterns magnitud. Ett tvåsidigt konfidensintervall innesluter populationsparametern både ovanifrån och underifrån.
rdf:langString Em estatística, intervalo de confiança (IC) é um tipo de estimativa por intervalo de um parâmetro populacional desconhecido. Introduzido na estatística por Jerzy Neyman em 1937, é um intervalo observado (calculado a partir de observações) que pode variar de amostra para amostra e que com dada frequência (nível de confiança) inclui o parâmetro de interesse real não observável. Como os dados observados são amostras aleatórias da população, o intervalo de confiança construído a partir dos dados também é aleatório. Entretanto, o intervalo de confiança calculado a partir de uma amostra particular não inclui necessariamente o valor real do parâmetro. Quando se tem 99% de confiança de que o valor real do parâmetro está no intervalo de confiança, significa que 99% dos intervalos de confiança observados têm o valor real do parâmetro. Tomando-se qualquer amostra particular, o parâmetro populacional desconhecido pode ou não pode estar no intervalo de confiança observado. O nível de confiança é a frequência com a qual o intervalo observado contém o parâmetro real de interesse quando o experimento é repetido várias vezes. Em outras palavras, o nível de confiança seria a proporção de intervalos de confiança construídos em experimentos separados da mesma população e com o mesmo procedimento que contém o parâmetro de interesse real. Em geral, refere-se a intervalo de confiança quando as duas extremidades de estimativa intervalar são finitas. Entretanto, refere-se a limiares superiores/inferiores de confiança quando uma das extremidades é infinita. O nível de confiança de 99% significa que 99% dos intervalos de confiança construídos a partir das amostras aleatórias contêm o parâmetro real. O nível de confiança desejado é determinado pelo pesquisador, não pelos dados. Se um teste de hipótese for realizado, o nível de confiança é o complemento do nível de significância. Isto é, um intervalo de confiança de 95% reflete um nível de significância de 0,05. Os intervalos de confiança são tipicamente estabelecidos no nível de confiança de 95%. Entretanto, quando apresentados graficamente os intervalos de confiança podem ser mostrados em vários níveis de confiança como 90%, 95% e 99%. Certos fatores podem afetar o tamanho do intervalo de confiança, incluindo o tamanho da amostra, o nível de confiança e a variabilidade da população. Um tamanho de amostra maior normalmente levará a uma estimativa melhor do parâmetro populacional. O intervalo de confiança contém os valores do parâmetro que quando testados não devem ser rejeitados com a mesma amostra. O intervalo de confiança de diferença do parâmetro entre duas populações que não contém 0 implica uma diferença significativa do mesmo parâmetro entre as populações.
rdf:langString Довірчий інтервал (англ. confidence interval, CI) — у математичній статистиці є типом , яку обчислюють за даними спостереження, і яка покриває невідомий статистичний параметр із заданою надійністю. Це інтервал, у межах якого з заданою довірчою імовірністю можна чекати значення оцінюваної (шуканої) випадкової величини. Застосовують для повнішої оцінки точності порівняно з точковою оцінкою. Метод довірчих інтервалів розробив американський статистик Єжи Нейман, виходячи з ідей англійського статистика Рональда Фішера. Наприклад, можна сказати: результати опитування показали, що кандидат набере на виборах 40 % голосів. Проте математично правильніше сказати: з імовірністю 90 % кількість голосів набраних кандидатом згідно з опитуваннями лежить в інтервалі 40±3 %. Тут довірчим інтервалом є ±3 %.
rdf:langString Довери́тельный интерва́л — термин, используемый в математической статистике при интервальной оценке статистических параметров, более предпочтительной при небольшом объёме выборки, чем точечная. Доверительным называют интервал, который покрывает неизвестный параметр с заданной надёжностью. Доверительным называется интервал, в который попадают измеренные в эксперименте значения, соответствующие доверительной вероятности. Метод доверительных интервалов разработал американский статистик Ежи Нейман, исходя из идей английского статистика Рональда Фишера.
rdf:langString 在统计学中,一个概率样本的置信区间(英語:Confidence interval,CI),是对产生这个样本的总体的参数分布(Parametric Distribution)中的某一个未知母數值,以区间形式给出的估计。相对于点估计(Point Estimation)用一个样本统计量来估计参数值,置信区间还蕴含了估计的精确度的信息。在现代机器学习中越来越常用的置信集合(Confidence Set)概念是置信区间在多维分析的推广。 置信区间在频率学派中间使用,其在贝叶斯统计中的对应概念是(Credible Interval)。两者建立在不同的概念基础上的,贝叶斯统计将分布的位置参数视为随机变量,并对给定观测到的数据之后未知参数的后验分布进行描述,故无论对随机样本还是已观测数据,构造出来的可信区间,其可信水平都是一个合法的概率;而置信区间的置信水平,只在考虑随机样本时可以被理解为一个概率。
rdf:langString § 7.2 
xsd:nonNegativeInteger 34878

data from the linked data cloud