Combinatorial proof
http://dbpedia.org/resource/Combinatorial_proof an entity of type: WikicatMathematicalProofs
Une preuve combinatoire est une démonstration qui tend à établir une identité entre deux expressions a priori différentes. La preuve s'appuie généralement sur deux techniques :
* Une preuve par double dénombrement, qui consiste à compter un même ensemble d'objets de deux manières différentes ;
* Une preuve par bijection, qui consiste à établir une bijection entre deux ensembles dont on souhaite prouver l'équipotence.
* Portail des mathématiques
rdf:langString
In mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof:
* A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established.
* A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.e. a one-to-one correspondence, between them.
rdf:langString
rdf:langString
Combinatorial proof
rdf:langString
Preuve combinatoire
xsd:integer
741875
xsd:integer
988864135
rdf:langString
In mathematics, the term combinatorial proof is often used to mean either of two types of mathematical proof:
* A proof by double counting. A combinatorial identity is proven by counting the number of elements of some carefully chosen set in two different ways to obtain the different expressions in the identity. Since those expressions count the same objects, they must be equal to each other and thus the identity is established.
* A bijective proof. Two sets are shown to have the same number of members by exhibiting a bijection, i.e. a one-to-one correspondence, between them. The term "combinatorial proof" may also be used more broadly to refer to any kind of elementary proof in combinatorics. However, as writes in his review of (a book about combinatorial proofs), these two simple techniques are enough to prove many theorems in combinatorics and number theory.
rdf:langString
Une preuve combinatoire est une démonstration qui tend à établir une identité entre deux expressions a priori différentes. La preuve s'appuie généralement sur deux techniques :
* Une preuve par double dénombrement, qui consiste à compter un même ensemble d'objets de deux manières différentes ;
* Une preuve par bijection, qui consiste à établir une bijection entre deux ensembles dont on souhaite prouver l'équipotence.
* Portail des mathématiques
xsd:nonNegativeInteger
10694