Closely related key
http://dbpedia.org/resource/Closely_related_key an entity of type: WikicatMusicalKeys
In music, a closely related key (or close key) is one sharing many common tones with an original key, as opposed to a distantly related key (or distant key). In music harmony, there are six of them: five share all, or all except one, pitches with a key with which it is being compared, and is adjacent to it on the circle of fifths and its relative major or minor, and one shares the same tonic. Given a major key tonic (I), the related keys are: Specifically:
* C major
* D minor
* E minor
* F major
* G major
* A major
rdf:langString
En música, dentro del sistema tonal, son tonalidades vecinas o tonalidades cercanas aquellas que comparten varios sonidos de su armadura. Esas tonalidades comparten todos los sonidos, o todos excepto uno, y son las tonalidades adyacentes en el círculo de quintas sus relativos mayores o menores. Esas tonalidades son los destinos más habituales de una modulación, por su parecido y la fortaleza de sus relaciones estructurales con la tonalidad original. Dada una tonalidad mayor, las tonalidades vecinas corresponden a: Ejemplos:
rdf:langString
En musique savante occidentale, un ton voisin (ou tonalité voisine) est une tonalité proche d'une tonalité donnée. Par extension, les tons voisins d'une tonalité sont les cinq plus proches tonalités de celle-ci, du point de vue de l'armure : le ton dit « relatif » du ton en question et les quatre tons dont l'armure comprend une altération de plus (avec son relatif) et de moins (avec son relatif également). Les autres tons sont dits « éloignés » et sont moins couramment utilisés, sauf à partir du romantisme. L'accord tempéré des instruments polyphoniques facilite alors l'usage de ces tons éloignés.
rdf:langString
rdf:langString
Closely related key
rdf:langString
Tonalidad vecina
rdf:langString
Ton voisin
xsd:integer
761750
xsd:integer
1123554628
rdf:langString
In music, a closely related key (or close key) is one sharing many common tones with an original key, as opposed to a distantly related key (or distant key). In music harmony, there are six of them: five share all, or all except one, pitches with a key with which it is being compared, and is adjacent to it on the circle of fifths and its relative major or minor, and one shares the same tonic. Such keys are the most commonly used destinations or transpositions in a modulation, because of their strong structural links with the home key. Distant keys may be reached sequentially through closely related keys by chain modulation, for example, C to G to D. For example, "One principle that every composer of Haydn's day [Classical music era] kept in mind was over-all unity of tonality. No piece dared wander too far from its tonic key, and no piece in a four-movement form dared to present a tonality not closely related to the key of the whole series." For example, the first movement of Mozart's Piano Sonata No. 7, K. 309, modulates only to closely related keys (the dominant, supertonic, and submediant). Given a major key tonic (I), the related keys are:
* ii (supertonic, the relative minor of the subdominant)
* iii (mediant, the relative minor of the dominant)
* IV (subdominant): one less sharp (or one more flat) around circle of fifths
* V (dominant): one more sharp (or one fewer flat) around circle of fifths
* vi (submediant or relative minor): different tonic, same key signature
* i (parallel minor): same tonic, different key signature Specifically: Starting from a minor key (i), the closely related keys are the mediant or relative major (III), the subdominant (iv), the minor dominant (v), the submediant (VI), the subtonic (VII), and the parallel major (I). In the key of A minor, when we translate them to keys, we get:
* C major
* D minor
* E minor
* F major
* G major
* A major Another view of closely related keys is that there are six closely related keys, based on the tonic and the remaining triads of the diatonic scale, excluding the dissonant diminished triads. Four of the five differ by one accidental, one has the same key signature, and one uses the parallel modal form. In the key of C major, these would be: D minor, E minor, F major, G major, A minor, and C minor. Despite being three sharps or flats away from the original key in the circle of fifths, parallel keys are also considered as closely related keys as the tonal center is the same, and this makes this key have an affinity with the original key. In modern music, the closeness of a relation between any two keys or sets of pitches may be determined by the number of tones they share in common, which allows one to consider modulations not occurring in standard major-minor tonality. For example, in music based on the pentatonic scale containing pitches C, D, E, G, and A, modulating a fifth higher gives the collection of pitches G, A, B, D, and E, having four of five tones in common. However, modulating up a tritone would produce F♯, G♯, A♯, C♯, D♯, which shares no common tones with the original scale. Thus the scale a fifth higher is very closely related, while the scale a tritone higher is not. Other modulations may be placed in order from closest to most distant depending upon the number of common tones. Another view in modern music, notably in Bartók, a common tonic produces closely related keys, the other scales being the six other modes. This usage can be found in several of the Mikrokosmos piano pieces. When modulation causes the new key to traverse the bottom of the circle of fifths this may give rise to a theoretical key, containing eight (or more) sharps or flats in its notated key signature; in such a case, notational conventions require recasting the new section in its enharmonically equivalent key. Andranik Tangian suggests 3D and 2D visualizations of key/chord proximity for both all major and all minor keys/chords by locating them along a single subdominant-dominant axis, which wraps a torus that is then unfolded.
rdf:langString
En música, dentro del sistema tonal, son tonalidades vecinas o tonalidades cercanas aquellas que comparten varios sonidos de su armadura. Esas tonalidades comparten todos los sonidos, o todos excepto uno, y son las tonalidades adyacentes en el círculo de quintas sus relativos mayores o menores. Esas tonalidades son los destinos más habituales de una modulación, por su parecido y la fortaleza de sus relaciones estructurales con la tonalidad original. Dada una tonalidad mayor, las tonalidades vecinas corresponden a:
* VI (relativo menor): misma armadura
* IV (subdominante): un sostenido menos (un bemol más) en el círculo de quintas
* V (dominante): un sostenido más (un bemol menos) en el círculo de cuartas
* II (relativo menor de la subdominante)
* III (relativo menor de la dominante) Ejemplos: En la música moderna, la cercanía entre dos tonalidades o conjunto de alturas puede determinarse por el número de sonidos que tienen en común, lo que permite considerar modulaciones que no ocurren en la tonalidad clásica o escolástica. Por ejemplo, en la música que se basa en la escala pentatónica que contiene las alturas do, re, mi, sol y la, al modular una quinta ascendentemente resultan las alturas sol, la, si, re y mi, cuatro de las cuales son comunes a la original. Sin embargo, al modular un tritono ascendentemente resultan fa♯, sol♯, la♯, do♯ y re♯, ninguna de las cuales es común a la escala original. Por lo tanto la escala que se forma una quinta ascendentemente es muy cercana, no así la que se forma a distancia de tritono. Cuando durante la modulación se atraviesa la parte inferior del círculo de quintas, puede llegarse a una tonalidad cuya armadura contiene más de 7 sostenidos o bemoles; en ese caso, suele re-escribirse la sección en una tonalidad equivalente enarmónicamente.
rdf:langString
En musique savante occidentale, un ton voisin (ou tonalité voisine) est une tonalité proche d'une tonalité donnée. Par extension, les tons voisins d'une tonalité sont les cinq plus proches tonalités de celle-ci, du point de vue de l'armure : le ton dit « relatif » du ton en question et les quatre tons dont l'armure comprend une altération de plus (avec son relatif) et de moins (avec son relatif également). Les autres tons sont dits « éloignés » et sont moins couramment utilisés, sauf à partir du romantisme. L'accord tempéré des instruments polyphoniques facilite alors l'usage de ces tons éloignés. Pour la tonalité de do majeur, par exemple, les tons voisins sont : la mineur, fa majeur et son relatif ré mineur, sol majeur et son relatif mi mineur. Autrement dit, les tons voisins sont les tons « entourant » la tonalité principale d'un morceau. Ils sont caractérisés par un grand nombre de notes communes. Les tons voisins permettent de s'éloigner de la tonalité de départ de façon progressive. Il faut pour cela prendre la tonalité de départ et chercher sa dominante et sa sous-dominante. Cela donne alors les deux premiers tons voisins. Les trois tons voisins restant sont les trois tonalités relatives à la gamme de départ et à ses deux tons voisins. Trois regards peuvent être portés sur les tons voisins : 1.
* Lien à la musique ancienne et acoustique : Par rapport à la tonalité principale, les tons voisins comportent les tonalités dont la tonique a un rapport de quinte supérieure et inférieure (soit une quarte supérieure) par rapport à la tonalité principale, plus leurs relatives (exemple : Do Majeur donnant Sol Majeur et Fa Majeur avec les relatives mineures). 2.
* Lien par tétracorde commun (lié à l'accord naturel) : par rapport à la tonalité d'origine, prendre les gammes ayant un tétracorde commun (premier tétracorde de Do Majeur commun avec le dernier de Fa Majeur, dernier tétracorde de Do Majeur commun avec le premier de Sol Majeur), ainsi que les relatives mineures de ces gammes. 3.
* Lien avec l'harmonie d'une gamme : Sur chaque degré d'une gamme peut-être constitué un accord (il convient de considérer que le VIIe degré se fusionne avec le Ve, cf fonctions harmoniques). Chacun des accords a une fonction harmonique pour la gamme considérée. Nous obtenons ainsi les accords du premier degré de l'ensemble des gammes composant les tons voisins.
xsd:nonNegativeInteger
10320