Classical group
http://dbpedia.org/resource/Classical_group an entity of type: WikicatLieGroups
En matemàtiques, els grups clàssics es defineixen com els grups lineals especials sobre els reals R, els complexos C i els quaternions H, juntament amb automorfismes de grups especials de formes bilineals simètriques o antisimètriques i de hermítiques o definides sobre espais vectorials de dimensió finita reals, complexos o quaterniònics. D'aquests, els grups de Lie clàssics complexos són quatre famílies infinites de grups de Lie que, juntament amb els , formen la totalitat dels . Els grups clàssics compactes són dels grups clàssics complexos. Els anàlegs finits dels grups clàssics són els clàssics. El terme grup clàssic fou creat per Hermann Weyl, a la seva monografia de 1939 .
rdf:langString
리 군론에서, 고전군(古典群, 영어: classical group)은 실수, 복소수, 또는 사원수 계수의, 특별한 쌍선형 형식 또는 에르미트 형식을 보존하는 정사각 행렬로 구성되는 리 군이다. 이들은 모두 (중심에 대한 몫을 취하면) 단순 리 군을 이룬다. 고전군이 아닌 단순 리 군은 F₄, G₂, E₆, E₇, E₈ 밖에 없다.
rdf:langString
在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 ) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。 和典型李群相对的是,具有一样的抽象性质,但不属于同一类。
rdf:langString
In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Cl
rdf:langString
En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques. Dans ce qui suit, les corps ne sont pas supposés être commutatifs.
rdf:langString
In de groepentheorie, een deelgebied van de wiskunde, zijn de klassieke groepen de lineaire groepen over de reële getallen, de complexe getallen en de quaternionen, samen met speciale automorfismegroepen van symmetrische of antisymmetrische bilineaire vormen of sesquilineaire vormen op eindigdimensonale vectorruimten over de reële getallen, de complexe getallen en de quaternionen.
rdf:langString
rdf:langString
Classical group
rdf:langString
Grup clàssic
rdf:langString
Grupo clásico
rdf:langString
Groupe classique
rdf:langString
고전군
rdf:langString
Klassieke groep
rdf:langString
典型群
xsd:integer
10172878
xsd:integer
1122465070
rdf:langString
C/c022410
rdf:langString
Classical group
rdf:langString
En matemàtiques, els grups clàssics es defineixen com els grups lineals especials sobre els reals R, els complexos C i els quaternions H, juntament amb automorfismes de grups especials de formes bilineals simètriques o antisimètriques i de hermítiques o definides sobre espais vectorials de dimensió finita reals, complexos o quaterniònics. D'aquests, els grups de Lie clàssics complexos són quatre famílies infinites de grups de Lie que, juntament amb els , formen la totalitat dels . Els grups clàssics compactes són dels grups clàssics complexos. Els anàlegs finits dels grups clàssics són els clàssics. El terme grup clàssic fou creat per Hermann Weyl, a la seva monografia de 1939 .
rdf:langString
In mathematics, the classical groups are defined as the special linear groups over the reals R, the complex numbers C and the quaternions H together with special automorphism groups of symmetric or skew-symmetric bilinear forms and Hermitian or skew-Hermitian sesquilinear forms defined on real, complex and quaternionic finite-dimensional vector spaces. Of these, the complex classical Lie groups are four infinite families of Lie groups that together with the exceptional groups exhaust the classification of simple Lie groups. The compact classical groups are compact real forms of the complex classical groups. The finite analogues of the classical groups are the classical groups of Lie type. The term "classical group" was coined by Hermann Weyl, it being the title of his 1939 monograph The Classical Groups. The classical groups form the deepest and most useful part of the subject of linear Lie groups. Most types of classical groups find application in classical and modern physics. A few examples are the following. The rotation group SO(3) is a symmetry of Euclidean space and all fundamental laws of physics, the Lorentz group O(3,1) is a symmetry group of spacetime of special relativity. The special unitary group SU(3) is the symmetry group of quantum chromodynamics and the symplectic group Sp(m) finds application in Hamiltonian mechanics and quantum mechanical versions of it.
rdf:langString
En mathématiques, les groupes classiques sont différentes familles de groupes de transformations liées à l'algèbre linéaire, principalement les groupes linéaires, orthogonaux, symplectiques et unitaires. Ces groupes peuvent aussi être présentés comme groupes de matrices inversibles, et des quotients de ceux-ci. Les groupes matrices carrées d'ordre n (GL(n, R)), GL(n, C)), le groupe des matrices orthogonales d'ordre n (O(n)) et le groupe des matrices unitaires d'ordre n (U(n)) sont des exemples explicites de groupes classiques. À tout groupe classique, on peut associer une ou plusieurs géométrie dite classique, dans l'esprit du programme d'Erlangen de Felix Klein. Réciproquement, les groupes associés aux géométries classiques sont des groupes classiques (ou liés à ceux-ci). Sans contexte ou qualificatif, l'expression groupe classique est ambiguë. Dans certains contextes, on peut lever l'ambiguïté : il y a les groupes de Lie simples classiques et les groupes algébriques simples classiques, ainsi que les groupes finis simples classiques. L'expression groupe classique aurait été créée par Hermann Weyl, et c'est lui qui l'a popularisée dans son traité The Classical Groups. Dans ce qui suit, les corps ne sont pas supposés être commutatifs. Dans ce qui suit, tous les espaces vectoriels sont supposés être de dimension finie non nulle.
rdf:langString
리 군론에서, 고전군(古典群, 영어: classical group)은 실수, 복소수, 또는 사원수 계수의, 특별한 쌍선형 형식 또는 에르미트 형식을 보존하는 정사각 행렬로 구성되는 리 군이다. 이들은 모두 (중심에 대한 몫을 취하면) 단순 리 군을 이룬다. 고전군이 아닌 단순 리 군은 F₄, G₂, E₆, E₇, E₈ 밖에 없다.
rdf:langString
In de groepentheorie, een deelgebied van de wiskunde, zijn de klassieke groepen de lineaire groepen over de reële getallen, de complexe getallen en de quaternionen, samen met speciale automorfismegroepen van symmetrische of antisymmetrische bilineaire vormen of sesquilineaire vormen op eindigdimensonale vectorruimten over de reële getallen, de complexe getallen en de quaternionen. Daarvan vormen de klassieke lie-groepen vier oneindige families van lie-groepen die nauw verwant zijn met de symmetrieën van euclidische ruimten. Er is een zekere speelruimte in het gebruik van de naam klassieke groep, deze hangt van de context af. Klassieke groep lijkt te zijn bedacht door Hermann Weyl, zoals in de titel van zijn monografie uit 1940. Het weerspiegelt hun relatie tot de klassieke meetkunde, in de geest van het Erlanger Programm van Felix Klein.
rdf:langString
在数学中,典型群(classical group)指与欧几里得空间的对称密切相关的四族无穷多李群。术语“经典”的使用取决于语境,有一定的灵活性。这个用法可能源于赫尔曼·外尔,他的专著 ) 以“典型群”为题。在菲利克斯·克莱因爱尔兰根纲领的观点下,也许反映了它们和“经典”几何(classical geometry)的关系。 有时在紧群的限制下讨论典型群,这样容易处理它们的表示论和代数拓扑。但是这把一般线性群排除在外,当前都认为一般线性群是最典型的群。 和典型李群相对的是,具有一样的抽象性质,但不属于同一类。
xsd:nonNegativeInteger
49231