Carlson symmetric form

http://dbpedia.org/resource/Carlson_symmetric_form an entity of type: Abstraction100002137

In der Mathematik sind die symmetrischen Carlson-Formen der elliptischen Integrale eine kleine kanonische Menge von elliptischen Integralen, auf die alle anderen reduziert werden können. Sie sind eine moderne Alternative zu den Legendre-Formen. Die Legendre-Formen können in Carlson-Formen ausgedrückt werden und umgekehrt. Die elliptischen Carlson-Integrale sind: Da und Sonderfälle von und sind, können alle elliptischen Integrale letztlich durch und dargestellt werden. Die elliptischen Carlson-Integrale sind nach Bille C. Carlson benannt. rdf:langString
In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa. The Carlson elliptic integrals are: Since and are special cases of and , all elliptic integrals can ultimately be evaluated in terms of just and . The Carlson elliptic integrals are named after Bille C. Carlson (1924-2013). rdf:langString
rdf:langString Symmetrische Carlson-Form
rdf:langString Carlson symmetric form
xsd:integer 406919
xsd:integer 1089407448
rdf:langString In der Mathematik sind die symmetrischen Carlson-Formen der elliptischen Integrale eine kleine kanonische Menge von elliptischen Integralen, auf die alle anderen reduziert werden können. Sie sind eine moderne Alternative zu den Legendre-Formen. Die Legendre-Formen können in Carlson-Formen ausgedrückt werden und umgekehrt. Die elliptischen Carlson-Integrale sind: Da und Sonderfälle von und sind, können alle elliptischen Integrale letztlich durch und dargestellt werden. Der Begriff symmetrisch bezieht sich auf die Tatsache, dass diese Funktionen im Gegensatz zu den Legendre-Formen durch Vertauschung bestimmter Funktionsargumente unverändert bleiben. Der Wert von ist derselbe für jede Permutation der Argumente, und der Wert von ist derselbe für jede Permutation der ersten drei Argumente. Die elliptischen Carlson-Integrale sind nach Bille C. Carlson benannt.
rdf:langString In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa. The Carlson elliptic integrals are: Since and are special cases of and , all elliptic integrals can ultimately be evaluated in terms of just and . The term symmetric refers to the fact that in contrast to the Legendre forms, these functions are unchanged by the exchange of certain subsets of their arguments. The value of is the same for any permutation of its arguments, and the value of is the same for any permutation of its first three arguments. The Carlson elliptic integrals are named after Bille C. Carlson (1924-2013).
xsd:nonNegativeInteger 13825

data from the linked data cloud