CA-group
http://dbpedia.org/resource/CA-group an entity of type: Abstraction100002137
In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups (or CT-groups for short) because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.
rdf:langString
Говорят, что группа является ЦА-группой, CA-группой или централизаторной абелевой группой, если централизатор любого нетождественного элемента является абелевой подгруппой. Конечные ЦА-группы имеют историческое значение как ранний пример типов классификаций, которые потом использовались в теореме Томпсона–Фейта и классификации простых конечных групп. Некоторые важные бесконечные группы являются ЦА-группами, такие как свободные группы, монстры Тарского и некоторые из групп Бёрнсайда, а локально конечные ЦА-группы были классифицированы точно. ЦА-группы также называются коммутативно-транзитивными группами (или КТ-группами для краткости), поскольку коммутативность является транзитивным отношением для нетождественных элементов группы тогда и только тогда, когда группа является ЦА-группой.
rdf:langString
rdf:langString
CA-group
rdf:langString
CA-группа
xsd:integer
5745198
xsd:integer
1032182669
rdf:langString
In mathematics, in the realm of group theory, a group is said to be a CA-group or centralizer abelian group if the centralizer of any nonidentity element is an abelian subgroup. Finite CA-groups are of historical importance as an early example of the type of classifications that would be used in the Feit–Thompson theorem and the classification of finite simple groups. Several important infinite groups are CA-groups, such as free groups, Tarski monsters, and some Burnside groups, and the locally finite CA-groups have been classified explicitly. CA-groups are also called commutative-transitive groups (or CT-groups for short) because commutativity is a transitive relation amongst the non-identity elements of a group if and only if the group is a CA-group.
rdf:langString
Говорят, что группа является ЦА-группой, CA-группой или централизаторной абелевой группой, если централизатор любого нетождественного элемента является абелевой подгруппой. Конечные ЦА-группы имеют историческое значение как ранний пример типов классификаций, которые потом использовались в теореме Томпсона–Фейта и классификации простых конечных групп. Некоторые важные бесконечные группы являются ЦА-группами, такие как свободные группы, монстры Тарского и некоторые из групп Бёрнсайда, а локально конечные ЦА-группы были классифицированы точно. ЦА-группы также называются коммутативно-транзитивными группами (или КТ-группами для краткости), поскольку коммутативность является транзитивным отношением для нетождественных элементов группы тогда и только тогда, когда группа является ЦА-группой.
xsd:nonNegativeInteger
5878