Breit equation
http://dbpedia.org/resource/Breit_equation an entity of type: Abstraction100002137
The Breit equation is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles (electrons, for example) interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics.
rdf:langString
Уравнение Брейта — релятивистское волновое уравнение, полученное Грегори Брейтом в 1929 году на основе уравнения Дирака. Оно описывает две или более массивные частицы со спином 1/2 (например, электроны), которые взаимодействуют электромагнитно с точностью до первого порядка теории возмущений. Оно учитывает магнитные взаимодействия и запаздывающие эффекты с точностью до 1/c². Когда другие квантовые электродинамические эффекты незначительны, это уравнение показывает хорошее согласование с экспериментом. Впервые оно было получено из дарвиновского лагранжиана, а позже доказано в теории поглощения Уилера — Фейнмана и, наконец, в квантовой электродинамике.
rdf:langString
Рівняння Брейта — релятивістське хвильове рівняння, отримане Ґреґорі Брейтом у 1929 році на основі рівняння Дірака. Воно описує дві чи більше масивні частинки зі спіном 1/2 (наприклад, електрони), що взаємодіють електромагнітно з точністю до першого порядку теорії збурень. Воно враховує магнітні взаємодії та запізнювальні ефекти з точністю до 1/c2. Коли інші квантові електродинамічні ефекти незначні, це рівняння демонструє добре узгодження з експериментом. Вперше воно було отримане з дарвінівського лагранжіану, а пізніше доведене в теорії поглинання Вілера-Фейнмана та, зрештою, в квантовій електродинаміці.
rdf:langString
rdf:langString
Breit equation
rdf:langString
Уравнение Брейта
rdf:langString
Рівняння Брейта
xsd:integer
1989515
xsd:integer
1113934081
rdf:langString
The Breit equation is a relativistic wave equation derived by Gregory Breit in 1929 based on the Dirac equation, which formally describes two or more massive spin-1/2 particles (electrons, for example) interacting electromagnetically to the first order in perturbation theory. It accounts for magnetic interactions and retardation effects to the order of 1/c2. When other quantum electrodynamic effects are negligible, this equation has been shown to give results in good agreement with experiment. It was originally derived from the Darwin Lagrangian but later vindicated by the Wheeler–Feynman absorber theory and eventually quantum electrodynamics.
rdf:langString
Уравнение Брейта — релятивистское волновое уравнение, полученное Грегори Брейтом в 1929 году на основе уравнения Дирака. Оно описывает две или более массивные частицы со спином 1/2 (например, электроны), которые взаимодействуют электромагнитно с точностью до первого порядка теории возмущений. Оно учитывает магнитные взаимодействия и запаздывающие эффекты с точностью до 1/c². Когда другие квантовые электродинамические эффекты незначительны, это уравнение показывает хорошее согласование с экспериментом. Впервые оно было получено из дарвиновского лагранжиана, а позже доказано в теории поглощения Уилера — Фейнмана и, наконец, в квантовой электродинамике.
rdf:langString
Рівняння Брейта — релятивістське хвильове рівняння, отримане Ґреґорі Брейтом у 1929 році на основі рівняння Дірака. Воно описує дві чи більше масивні частинки зі спіном 1/2 (наприклад, електрони), що взаємодіють електромагнітно з точністю до першого порядку теорії збурень. Воно враховує магнітні взаємодії та запізнювальні ефекти з точністю до 1/c2. Коли інші квантові електродинамічні ефекти незначні, це рівняння демонструє добре узгодження з експериментом. Вперше воно було отримане з дарвінівського лагранжіану, а пізніше доведене в теорії поглинання Вілера-Фейнмана та, зрештою, в квантовій електродинаміці.
xsd:nonNegativeInteger
8018