Bottema's theorem

http://dbpedia.org/resource/Bottema's_theorem an entity of type: Thing

De stelling van Bottema is een stelling uit de euclidische meetkunde vernoemd naar Oene Bottema. Bottema beschreef de stelling in de vorm van een verhaal over een verloren schat in een van zijn "Verscheidenheden" in het Nieuw Tijdschrift voor Wiskunde in 1959. Hij is echter niet de eerste auteur van de stelling. rdf:langString
Bottema's theorem is a theorem in plane geometry by the Dutch mathematician (Groningen, 1901–1992). The theorem can be stated as follows: in any given triangle , construct squares on any two adjacent sides, for example and . The midpoint of the line segment that connects the vertices of the squares opposite the common vertex, , of the two sides of the triangle is independent of the location of . The theorem is true when the squares are constructed in one of the following ways: If the squares are replaced by regular polygons of the same type, then a generalized Bottema theorem is obtained: rdf:langString
rdf:langString Bottema's theorem
rdf:langString Stelling van Bottema
xsd:integer 63906911
xsd:integer 1117394380
rdf:langString Bottema's theorem is a theorem in plane geometry by the Dutch mathematician (Groningen, 1901–1992). The theorem can be stated as follows: in any given triangle , construct squares on any two adjacent sides, for example and . The midpoint of the line segment that connects the vertices of the squares opposite the common vertex, , of the two sides of the triangle is independent of the location of . The theorem is true when the squares are constructed in one of the following ways: * Looking at the figure, starting from the lower left vertex, , follow the triangle vertices clockwise and construct the squares to the left of the sides of the triangle. * Follow the triangle in the same way and construct the squares to the right of the sides of the triangle. If the squares are replaced by regular polygons of the same type, then a generalized Bottema theorem is obtained: In any given triangle construct two regular polygons on two sides and .Take the points and on the circumcircles of the polygons, which are diametrically opposed of the common vertex . Then, the midpoint of the line segment is independent of the location of . * Van Aubel's theorem * Napoleon's theorem
rdf:langString De stelling van Bottema is een stelling uit de euclidische meetkunde vernoemd naar Oene Bottema. Bottema beschreef de stelling in de vorm van een verhaal over een verloren schat in een van zijn "Verscheidenheden" in het Nieuw Tijdschrift voor Wiskunde in 1959. Hij is echter niet de eerste auteur van de stelling.
xsd:nonNegativeInteger 3676

data from the linked data cloud