Borel isomorphism

http://dbpedia.org/resource/Borel_isomorphism an entity of type: Disease

Als Borel-Isomorphie wird eine Beziehung zwischen zwei Messräumen in der Maßtheorie, einem Teilgebiet der Mathematik, bezeichnet. Sind zwei Messräume Borel-isomorph, so sind sie aus maßtheoretischer Sicht gleich. Das erlaubt es, Argumentationen und Strukturen von dem einen Raum auf den anderen Raum zu übertragen. rdf:langString
In mathematics, a Borel isomorphism is a measurable bijective function between two measurable standard Borel spaces. By Souslin's theorem in standard Borel spaces (a set that is both analytic and coanalytic is necessarily Borel), the inverse of any such measurable bijective function is also measurable. Borel isomorphisms are closed under composition and under taking of inverses. The set of Borel isomorphisms from a space to itself clearly forms a group under composition. Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable. rdf:langString
rdf:langString Borel-Isomorphie
rdf:langString Borel isomorphism
xsd:integer 33605690
xsd:integer 1097760959
rdf:langString Als Borel-Isomorphie wird eine Beziehung zwischen zwei Messräumen in der Maßtheorie, einem Teilgebiet der Mathematik, bezeichnet. Sind zwei Messräume Borel-isomorph, so sind sie aus maßtheoretischer Sicht gleich. Das erlaubt es, Argumentationen und Strukturen von dem einen Raum auf den anderen Raum zu übertragen.
rdf:langString In mathematics, a Borel isomorphism is a measurable bijective function between two measurable standard Borel spaces. By Souslin's theorem in standard Borel spaces (a set that is both analytic and coanalytic is necessarily Borel), the inverse of any such measurable bijective function is also measurable. Borel isomorphisms are closed under composition and under taking of inverses. The set of Borel isomorphisms from a space to itself clearly forms a group under composition. Borel isomorphisms on standard Borel spaces are analogous to homeomorphisms on topological spaces: both are bijective and closed under composition, and a homeomorphism and its inverse are both continuous, instead of both being only Borel measurable.
xsd:nonNegativeInteger 1912

data from the linked data cloud