Borel conjecture

http://dbpedia.org/resource/Borel_conjecture an entity of type: WikicatConjectures

Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий. rdf:langString
In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). rdf:langString
rdf:langString Borel conjecture
rdf:langString Гипотеза Бореля
xsd:integer 7181855
xsd:integer 1025579794
rdf:langString In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). There is a different Borel conjecture (named for Émile Borel) in set theory. It asserts that every strong measure zero set of reals is countable. Work of Nikolai Luzin and Richard Laver shows that this conjecture is independent of the ZFC axioms. This article is about the Borel conjecture in geometric topology.
rdf:langString Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий.
xsd:nonNegativeInteger 4767

data from the linked data cloud