Borel conjecture
http://dbpedia.org/resource/Borel_conjecture an entity of type: WikicatConjectures
Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий.
rdf:langString
In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism).
rdf:langString
rdf:langString
Borel conjecture
rdf:langString
Гипотеза Бореля
xsd:integer
7181855
xsd:integer
1025579794
rdf:langString
In mathematics, specifically geometric topology, the Borel conjecture (named for Armand Borel) asserts that an aspherical closed manifold is determined by its fundamental group, up to homeomorphism. It is a rigidity conjecture, asserting that a weak, algebraic notion of equivalence (namely, homotopy equivalence) should imply a stronger, topological notion (namely, homeomorphism). There is a different Borel conjecture (named for Émile Borel) in set theory. It asserts that every strong measure zero set of reals is countable. Work of Nikolai Luzin and Richard Laver shows that this conjecture is independent of the ZFC axioms. This article is about the Borel conjecture in geometric topology.
rdf:langString
Гипотеза Бореля — гипотеза в топологии многообразий о гомеоморфности гомотопически эквивалентных асферических замкнутых многообразий.
xsd:nonNegativeInteger
4767