Biclique-free graph
http://dbpedia.org/resource/Biclique-free_graph
In graph theory, a branch of mathematics, a t-biclique-free graph is a graph that has no 2t-vertex complete bipartite graph Kt,t as a subgraph. A family of graphs is biclique-free if there exists a number t such that the graphs in the family are all t-biclique-free. The biclique-free graph families form one of the most general types of sparse graph family. They arise in incidence problems in discrete geometry, and have also been used in parameterized complexity.
rdf:langString
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в .
rdf:langString
У теорії графів ві́льний від t-біклі́к граф — граф, у якому немає повних двочасткових графів із 2t вершинами Kt,t як підграфів. Сімейство графів є вільним від біклік, якщо існує число t таке, що всі графи в сімействі вільні від t-біклік. Сімейства вільних від біциклів графів утворюють один із найзагальніших типів сімейств розріджених графів. Вони виникають у задачах інцидентності в комбінаторній геометрії, а також використовуються в .
rdf:langString
rdf:langString
Biclique-free graph
rdf:langString
Свободный от биклик граф
rdf:langString
Вільний від біклік граф
xsd:integer
47489952
xsd:integer
1096390493
rdf:langString
In graph theory, a branch of mathematics, a t-biclique-free graph is a graph that has no 2t-vertex complete bipartite graph Kt,t as a subgraph. A family of graphs is biclique-free if there exists a number t such that the graphs in the family are all t-biclique-free. The biclique-free graph families form one of the most general types of sparse graph family. They arise in incidence problems in discrete geometry, and have also been used in parameterized complexity.
rdf:langString
В теории графов свободный от t-биклик граф — это граф, в котором нет полных двудольных графов с 2t вершинами Kt,t в качестве подграфов. Семейство графов является свободным от биклик, если существует число t, такое, что все графы в семействе свободны от t-биклик. Семейства свободных от бициклов графов образуют одно из наиболее общих типов семейств разреженных графов. Они возникают в задачах инцидентности в комбинаторной геометрии, а также используются в .
rdf:langString
У теорії графів ві́льний від t-біклі́к граф — граф, у якому немає повних двочасткових графів із 2t вершинами Kt,t як підграфів. Сімейство графів є вільним від біклік, якщо існує число t таке, що всі графи в сімействі вільні від t-біклік. Сімейства вільних від біциклів графів утворюють один із найзагальніших типів сімейств розріджених графів. Вони виникають у задачах інцидентності в комбінаторній геометрії, а також використовуються в .
xsd:nonNegativeInteger
6540