Bessel function
http://dbpedia.org/resource/Bessel_function an entity of type: Thing
في الرياضيات، دوال بسل (بالإنجليزية: Bessel functions) هن الحلول القانونية (y(x لمعادلة بسل التفاضلية من أجل عدد مركب α (رتبة دالة بسل). الحالة الخاصة والأكثر انتشارا وأهمية هي عندما تكون α عددا صحيحا أو عددا نصف صحيح. كان الرياضياتي دانييل برنولي أول من عرفها ثم عممت من قبل فريدريش بيسيل. مع أن α و−α تعطي نفس المعادلة التفاضلية، من المألوف تعريف دوال بسل مختلفة للترتبتين هاتين. تعرف دوال بسل أيضا ب دوال الاسطوانة أو التوافقيات الاسطوانية لأنها تمثل الحل لمعادلة لابلاس في الإحداثيات الاسطوانية.
rdf:langString
Les funcions de Bessel són les solucions canòniques de l'equació diferencial de Bessel: que tenen com a punt singular regular i una singularitat essencial a . El paràmetre és un nombre donat que es pot considerar positiu sense cap pèrdua de generalitat.
rdf:langString
Besselova funkce je řešení Besselovy rovnice pro libovolné reálné číslo , které je označováno jako řád Besselovy funkce. Funkce je pojmenována na počest německého matematika a fyzika Friedricha Wilhelma Bessela, který ji poprvé popsal.
rdf:langString
Airyho funkce je pojmenovaná podle britského matematika a astronoma George Airyho. Funkce a s ní příbuzná funkce tvoří řešení diferenciální rovnice která je známa jako Airyho nebo Stokesova rovnice. Přesné řešení této rovnice má tvar kde a jsou neznámé reálné (popřípadě komplexní) koeficienty (integrační konstanty). Toto řešení má charakteristický tvar, kde funkce prvně osciluje, poté však exponenciálně roste nebo klesá.
rdf:langString
في الفيزياء، دالة أيري (بالإنجليزية: Airy function) (أو دالة أيري من النوع الأول) هي دالة خاصة تحمل اسم العالم البريطاني جورج بيدل أيري. يرمز إليها ب Ai(x). الدالة Ai(x) والدالة المتعلقة بها Bi(x) هما دالتان مستقلتان خطيا تحلان المعادلة التفاضلية التالية .
rdf:langString
Die Airy-Funktion bezeichnet eine spezielle Funktion in der Mathematik. Die Funktion und die verwandte Funktion , die ebenfalls Airy-Funktion genannt wird, sind Lösungen der linearen Differentialgleichung auch bekannt als Airy-Gleichung. Sie beschreibt unter anderem die Lösung der Schrödinger-Gleichung für einen linearen Potentialtopf. Die Airy-Funktion ist nach dem britischen Astronomen George Biddell Airy benannt, der diese Funktion in seinen Arbeiten in der Optik verwendete (Airy 1838). Die Bezeichnung wurde von Harold Jeffreys eingeführt.
rdf:langString
La fonction d'Airy Ai est une des fonctions spéciales en mathématiques, c'est-à-dire une des fonctions remarquables apparaissant fréquemment dans les calculs. Elle porte le nom de l'astronome britannique George Biddell Airy, qui l'introduisit pour ses calculs d'optique, notamment lors de l'étude de l'arc-en-ciel. La fonction d'Airy Ai et la fonction Bi, qu'on appelle fonction d'Airy de seconde espèce, sont des solutions de l'équation différentielle linéaire d'ordre deux connue sous le nom d'équation d'Airy.
rdf:langString
ベッセル関数(ベッセルかんすう、英: Bessel function)とは、最初にスイスの数学者ダニエル・ベルヌーイによって定義され、フリードリヒ・ヴィルヘルム・ベッセルにちなんで名づけられた関数。円筒関数と呼ばれることもある。以下に示す、ベッセルの微分方程式におけるの特殊解の1つである。 上の式において、は、任意の実数である(次数と呼ばれる)。が整数に等しい場合がとくに重要である。 及びはともに同一の微分方程式を与えるが、慣例としてこれら2つの異なる次数に対して異なるベッセル関数が定義される(例えば、の関数としてなるべく滑らかになるようにベッセル関数を定義する、など)。 そもそもベッセル関数は、惑星の軌道運動に関するケプラー方程式をベッセルが解析的に解いた際に導入された。
rdf:langString
수학에서 에어리 함수(Airy function)는 특수 함수의 한 종류다. 두 개가 있으며, 기호는 Ai와 Bi다. 조지 비델 에어리가 광학을 연구하기 위해 1838년에 도입하였다.
rdf:langString
수학에서 베셀 함수(Bessel function)는 헬름홀츠 방정식을 원통좌표계에서 변수분리할 때 등장하는 특수 함수다. 물리학에서 맥스웰 방정식이나 열 방정식, 슈뢰딩거 방정식 등 다양한 문제를 풀 때 쓰인다.
rdf:langString
A Função de Bessel, foi definida pela primeira vez por Daniel Bernoulli e generalizada por Friedrich Bessel. Ela é a solução da equação diferencial: para um número real . Ela é denominada equação de Bessel de índice .
rdf:langString
Funkcje Bessela – rozwiązania równania różniczkowego drugiego stopnia ze zmiennymi współczynnikami (równania Bessela): gdzie jest dowolną liczbą rzeczywistą. Szczególnym przypadkiem, o szerokim zastosowaniu (m.in. w analizie rozkładu pola elektromagnetycznego czy przetwarzaniu sygnałów) są równania, gdzie α jest liczbą naturalną zwaną rzędem funkcji Bessela. Ponieważ mamy do czynienia z równaniem różniczkowym drugiego rzędu, musimy otrzymać dwa liniowo niezależne rozwiązania.
rdf:langString
Inom matematiken är besselfunktionerna lösningarna till differentialekvationen . Denna ekvation uppkommer när man tittar på den radiella delen av Laplaces ekvation i cylindriska koordinater.
rdf:langString
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где — произвольное вещественное число (в общем случае комплексное), называемое порядком. Наиболее часто используемые функции Бесселя — функции целых порядков. Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ). Функции Бесселя впервые были определены швейцарским математиком Даниилом Бернулли, а названы в честь Фридриха Бесселя.
rdf:langString
Функції Бесселя в математиці — сімейство функцій, що є канонічними розв'язками диференціального рівняння Бесселя: де — довільне дійсне число, зване порядком. Найчастіше використовувані функції Бесселя — функції цілих та напівцілих порядків. Хоча і породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була гладкою по ). Функції Бесселя вперше були визначені швейцарським математиком Даніелем Бернуллі, а названі на честь Фрідріха Бесселя.
rdf:langString
艾里函数(Ai(x)),英国英格蘭天文学家、數學家喬治·比德爾·艾里命名的特殊函数,他在1838年研究光学的时候遇到了这个函数。Ai(x)的记法是Harold Jeffreys引进的。Ai(x)与相关函数Bi(x)(也称为艾里函数),是以下微分方程的解: 这个方程称为艾里方程或斯托克斯方程。这是最简单的二阶线性微分方程,它有一个转折点,在这一点函数由周期性的振动转变为指数增长(或衰减)。
rdf:langString
贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的贝塞尔函数指(Bessel function of the first kind)。一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数: 该方程的通解无法用初等函数表示。 由於贝塞尔微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用和來表示标准解函数: 注意,由於 在 x=0 時候是發散的(無窮),當取 x=0 時,相關係數 必須為0時,才能獲得有物理意義的結果。 贝塞尔函数的具体形式随上述方程中任意实数或複數α变化而变化(相应地,α被称为其对应贝塞尔函数的阶数)。实际应用中最常见的情形为α是整数n,对应解称为n 阶贝塞尔函数。 尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。 贝塞尔函數也被稱為柱諧函數、圓柱函數或圓柱諧波,因為他們是於拉普拉斯方程在圓柱坐標上的求解過程中被發現的。
rdf:langString
La funció d'Airy Ai ( x ) is una funció especial, anomenada així per l'astrònom britànic George Biddell Airy. La funció Ai ( x ) i la funció relacionada Bi ( x ), també anomenada de vegades funció d'Airy, són solucions linealment independents de l'equació diferencial ordinària: Aquesta equació diferencial rep el nom d'equació d'Airy o equació de Stokes. És l'equació diferencial lineal de segon ordre més simple que té un punt on la solució passa de tenir un comportament oscil·latori a un (de) creixement exponencial.
rdf:langString
Η συνάρτηση Μπέσελ (αγγλικά: Bessel equation), που αρχικά ορίστηκε από τον μαθηματικό Ντάνιελ Μπερνούλι και γενικεύθηκε αργότερα από τον Φρίντριχ Βίλχελμ Μπέσελ, δίνει τις κανονικές λύσεις y(x) της διαφορικής εξίσωσης του Μπέσσελ, για έναν αυθαίρετο μιγαδικό αριθμό α (η σειρά της συνάρτησης του Μπέσελ). Αν και ο α και ο −α παράγουν την ίδια διαφορική εξίσωση για κάθε πραγματικό αριθμό α, είναι κατανοητό ότι προσδιορίζουν διαφορετικές συναρτήσεις Μπέσελ για αυτές τις δύο τιμές έτσι ώστε οι συναρτήσεις Μπέσελ να είναι συνήθως ομαλές συναρτήσεις του α.
rdf:langString
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
rdf:langString
En matematiko, funkcioj de Bessel, unue difinitaj de Daniel Bernoulli kaj ĝeneraligitaj de Friedrich Bessel, estas y(x) de diferenciala ekvacio de Bessel por ajna reela aŭ kompleksa nombro α kiu (la ordo de la funkcio de Bessel); la plej komunaj kaj gravaj okazoj estas por α kiu estas entjero aŭ .
rdf:langString
La función de Airy Ai(x) es una función especial, llamada así por el astrónomo británico George Biddell Airy (1801–1892). La función Ai(x) y la función relacionada Bi(x), también llamada a veces función de Airy, son soluciones linealmente independientes de la ecuación diferencial ordinaria:. Esta ecuación diferencial recibe el nombre de ecuación de Airy o ecuación de Stokes. Es la ecuación diferencial lineal de segundo orden más simple que posee un punto donde la solución pasa de tener un comportamiento oscilatorio a un (de)crecimiento exponencial.
rdf:langString
En matemáticas, las funciones de Bessel, primero definidas por el matemático Daniel Bernoulli y más tarde generalizadas por Friedrich Bessel, son soluciones canónicas y(x) de la ecuación diferencial de Bessel: donde es un número real o complejo. El caso más común es cuando es un entero , aunque la solución para no entero es similar. El número se denomina orden de las funciones de Bessel asociadas a dicha ecuación. Dado que la ecuación anterior es una ecuación diferencial de segundo orden, tiene dos soluciones linealmente independientes.
rdf:langString
En mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli. Ces fonctions sont des solutions canoniques y(x) de l'équation différentielle de Bessel : Il existe deux sortes de fonctions de Bessel :
rdf:langString
In analisi matematica le armoniche cilindriche, definite per la prima volta da Daniel Bernoulli e successivamente rinominate da Bessel di cui talvolta prendono il nome (in modo erroneo nell'insieme, sono in realtà una loro sottoclasse), sono le soluzioni canoniche delle equazioni di Bessel:
rdf:langString
エアリー関数(エアリーかんすう、英: Airy function)あるいは第一種エアリー関数 (Airy function of the first kind) Ai(x) は、イギリスの天文学者ジョージ・ビドル・エアリー (1801–92) に因んで名づけられた特殊関数である。この関数 Ai(x) および第二種エアリー関数とも呼ばれる関連の関数(A を次の文字 B に変えて、故に冗談めかしてベアリー (Biry) 関数とも)Bi(x) は、エアリー方程式あるいはストークス方程式と呼ばれる微分方程式 の線型独立な解としても言及される。これは転回点(turning point: 方程式の解が振動型から指数型へ変わる特徴点)を持つ最も単純な二階線型微分方程式である。 エアリー関数は三角ポテンシャル井戸に留め置かれた粒子に対する、あるいは一次元定力場における粒子に対するシュレーディンガー方程式の解である。同じ理由により、ポテンシャルが位置の線型関数で局所近似されるときの、転回点の周りでのWKB近似として、エアリー関数は一様半古典近似を与えるのに利用できる。三角ポテンシャル井戸解は、多くの半導体デバイスを理解することに直接的に関係がある。
rdf:langString
In matematica le funzioni di Airy sono due funzioni speciali indicate rispettivamente con e che traggono il nome da quello dell'astronomo inglese George Biddell Airy (1801-1892). Esse costituiscono le soluzioni dell'equazione differenziale ordinaria, detta "di Airy", . , nel caso in cui la componente del vettore d'onda dipenda dalla radice della direzione: .
rdf:langString
Besselfuncties zijn oplossingen van de besselse differentiaalvergelijking. Ze worden zo genoemd naar de wiskundige en astronoom Friedrich Wilhelm Bessel, die de vergelijking uitwerkte. Hij deed dit met het doel de verstoring te berekenen die drie hemellichamen op elkaars baan uitoefenen; voorbereidend werk was door anderen gedaan, maar Bessels vergelijking was meer algemeen geldig. Besselfuncties worden onderscheiden naar besselfuncties van de eerste soort en van de tweede soort. De besselfunctie van de eerste soort van de orde wordt genoteerd als , en die van de tweede soort van de orde als .
rdf:langString
Фу́нкция Э́йри — частное решение дифференциального уравнения называемого уравнением Эйри (впервые рассмотрено и исследовано в 1838 году британским астрономом Джорджем Бидделем Эйри). Это — простейшее дифференциальное уравнение, имеющее на действительной оси точку, в которой вид решения меняется с колеблющегося на экспоненциальный. В. А. Фок предложил для обозначения функций Ai и Bi символы U и V соответственно. Функция Эйри является решением уравнения Шрёдингера для частицы в треугольной потенциальной яме.
rdf:langString
Функція Ейрі Ai(x) — спеціальна функція, названа на честь британського астронома Джорджа Бідделя Ейрі. Функції Ai(x) та пов'язана з нею Bi(x), яка називається функцією Ейрі другого роду, є лінійно незалежними розв'язками диференціального рівняння , що називається рівнянням Ейрі. Це найпростіше диференціальне рівняння що має точку, в якій вид розв'язку замінюється з коливального на експоненційний.
rdf:langString
rdf:langString
دالة بيسل
rdf:langString
دالة أيري
rdf:langString
Funció d'Airy
rdf:langString
Funció de Bessel
rdf:langString
Besselova funkce
rdf:langString
Airyho funkce
rdf:langString
Bessel-Funktion
rdf:langString
Airy-Funktion
rdf:langString
Συνάρτηση Μπέσελ
rdf:langString
Funkcio de Bessel
rdf:langString
Función de Airy
rdf:langString
Función de Bessel
rdf:langString
Bessel function
rdf:langString
Fonction de Bessel
rdf:langString
Fonction d'Airy
rdf:langString
Funzioni di Airy
rdf:langString
Armoniche cilindriche
rdf:langString
ベッセル関数
rdf:langString
에어리 함수
rdf:langString
베셀 함수
rdf:langString
エアリー関数
rdf:langString
Besselfunctie
rdf:langString
Funkcje Bessela
rdf:langString
Função de Bessel
rdf:langString
Функция Эйри
rdf:langString
Функции Бесселя
rdf:langString
Besselfunktion
rdf:langString
Функція Ейрі
rdf:langString
艾里函数
rdf:langString
贝塞尔函数
rdf:langString
Функції Бесселя
xsd:integer
4700
xsd:integer
1124324378
rdf:langString
Frank W. J. Olver
rdf:langString
Heinrich Martin Weber
rdf:langString
June 2018
rdf:langString
H. M.
rdf:langString
A.P.
rdf:langString
F. W. J.
rdf:langString
L. C.
rdf:langString
L. N.
rdf:langString
N. Kh.
rdf:langString
P. I.
xsd:integer
10
rdf:langString
B/b015830
rdf:langString
BesselFunctionoftheFirstKind
rdf:langString
b/b015840
rdf:langString
c/c027610
rdf:langString
Weber
rdf:langString
Olver
rdf:langString
Prudnikov
rdf:langString
Maximon
rdf:langString
Karmazina
rdf:langString
Lizorkin
rdf:langString
Rozov
rdf:langString
This can probably be precisely qualified e.g. square integrable etc.
rdf:langString
Bessel equation
rdf:langString
Bessel functions
rdf:langString
Bessel functions of the first kind
rdf:langString
Cylinder function
xsd:integer
1873
rdf:langString
في الرياضيات، دوال بسل (بالإنجليزية: Bessel functions) هن الحلول القانونية (y(x لمعادلة بسل التفاضلية من أجل عدد مركب α (رتبة دالة بسل). الحالة الخاصة والأكثر انتشارا وأهمية هي عندما تكون α عددا صحيحا أو عددا نصف صحيح. كان الرياضياتي دانييل برنولي أول من عرفها ثم عممت من قبل فريدريش بيسيل. مع أن α و−α تعطي نفس المعادلة التفاضلية، من المألوف تعريف دوال بسل مختلفة للترتبتين هاتين. تعرف دوال بسل أيضا ب دوال الاسطوانة أو التوافقيات الاسطوانية لأنها تمثل الحل لمعادلة لابلاس في الإحداثيات الاسطوانية.
rdf:langString
La funció d'Airy Ai ( x ) is una funció especial, anomenada així per l'astrònom britànic George Biddell Airy. La funció Ai ( x ) i la funció relacionada Bi ( x ), també anomenada de vegades funció d'Airy, són solucions linealment independents de l'equació diferencial ordinària: Aquesta equació diferencial rep el nom d'equació d'Airy o equació de Stokes. És l'equació diferencial lineal de segon ordre més simple que té un punt on la solució passa de tenir un comportament oscil·latori a un (de) creixement exponencial. A més la funció d'Airy és una solució a l'equació de Schrödinger per a una partícula confinada dins d'un pou potencial triangular i també la solució per al moviment unidimensional d'una partícula quàntica afectada per una força constant.
rdf:langString
Les funcions de Bessel són les solucions canòniques de l'equació diferencial de Bessel: que tenen com a punt singular regular i una singularitat essencial a . El paràmetre és un nombre donat que es pot considerar positiu sense cap pèrdua de generalitat.
rdf:langString
Besselova funkce je řešení Besselovy rovnice pro libovolné reálné číslo , které je označováno jako řád Besselovy funkce. Funkce je pojmenována na počest německého matematika a fyzika Friedricha Wilhelma Bessela, který ji poprvé popsal.
rdf:langString
Airyho funkce je pojmenovaná podle britského matematika a astronoma George Airyho. Funkce a s ní příbuzná funkce tvoří řešení diferenciální rovnice která je známa jako Airyho nebo Stokesova rovnice. Přesné řešení této rovnice má tvar kde a jsou neznámé reálné (popřípadě komplexní) koeficienty (integrační konstanty). Toto řešení má charakteristický tvar, kde funkce prvně osciluje, poté však exponenciálně roste nebo klesá.
rdf:langString
في الفيزياء، دالة أيري (بالإنجليزية: Airy function) (أو دالة أيري من النوع الأول) هي دالة خاصة تحمل اسم العالم البريطاني جورج بيدل أيري. يرمز إليها ب Ai(x). الدالة Ai(x) والدالة المتعلقة بها Bi(x) هما دالتان مستقلتان خطيا تحلان المعادلة التفاضلية التالية .
rdf:langString
Η συνάρτηση Μπέσελ (αγγλικά: Bessel equation), που αρχικά ορίστηκε από τον μαθηματικό Ντάνιελ Μπερνούλι και γενικεύθηκε αργότερα από τον Φρίντριχ Βίλχελμ Μπέσελ, δίνει τις κανονικές λύσεις y(x) της διαφορικής εξίσωσης του Μπέσσελ, για έναν αυθαίρετο μιγαδικό αριθμό α (η σειρά της συνάρτησης του Μπέσελ). Αν και ο α και ο −α παράγουν την ίδια διαφορική εξίσωση για κάθε πραγματικό αριθμό α, είναι κατανοητό ότι προσδιορίζουν διαφορετικές συναρτήσεις Μπέσελ για αυτές τις δύο τιμές έτσι ώστε οι συναρτήσεις Μπέσελ να είναι συνήθως ομαλές συναρτήσεις του α. Οι πιο σημαντικές περιπτώσεις προκύπτουν για ακέραια ή ημιακέραια α. Οι συναρτήσεις Μπέσελ για ακέραιο α είναι επίσης γνωστές ως κυλινδρικές συναρτήσεις ή επειδή εμφανίζονται ως λύσεις της εξίσωσης Λαπλάς σε κυλινδρικές συντεταγμένες. Οι σφαιρικές συναρτήσεις Μπέσελ με ημιακέραια α λαμβάνονται όταν λύνεται η σε σφαιρικές συντεταγμένες.
rdf:langString
Die Airy-Funktion bezeichnet eine spezielle Funktion in der Mathematik. Die Funktion und die verwandte Funktion , die ebenfalls Airy-Funktion genannt wird, sind Lösungen der linearen Differentialgleichung auch bekannt als Airy-Gleichung. Sie beschreibt unter anderem die Lösung der Schrödinger-Gleichung für einen linearen Potentialtopf. Die Airy-Funktion ist nach dem britischen Astronomen George Biddell Airy benannt, der diese Funktion in seinen Arbeiten in der Optik verwendete (Airy 1838). Die Bezeichnung wurde von Harold Jeffreys eingeführt.
rdf:langString
En matematiko, funkcioj de Bessel, unue difinitaj de Daniel Bernoulli kaj ĝeneraligitaj de Friedrich Bessel, estas y(x) de diferenciala ekvacio de Bessel por ajna reela aŭ kompleksa nombro α kiu (la ordo de la funkcio de Bessel); la plej komunaj kaj gravaj okazoj estas por α kiu estas entjero aŭ . Kvankam α kaj -α produktas la saman diferencialan ekvacio, estas kutime difini malsamajn funkciojn de Bessel por ĉi tiuj du ordoj (ekzemple, por ke la funkcioj de Bessel estu plejparte glataj funkcioj de α). Funkcioj de Bessel estas ankaŭ sciata kiel cilindraj funkcioj aŭ cilindraj harmonoj ĉar ili estas trovataj en la solvaĵo al laplaca ekvacio en cilindraj koordinatoj.
rdf:langString
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of . The most important cases are when is an integer or half-integer. Bessel functions for integer are also known as cylinder functions or the cylindrical harmonics because they appear in the solution to Laplace's equation in cylindrical coordinates. with half-integer are obtained when the Helmholtz equation is solved in spherical coordinates.
rdf:langString
En matemáticas, las funciones de Bessel, primero definidas por el matemático Daniel Bernoulli y más tarde generalizadas por Friedrich Bessel, son soluciones canónicas y(x) de la ecuación diferencial de Bessel: donde es un número real o complejo. El caso más común es cuando es un entero , aunque la solución para no entero es similar. El número se denomina orden de las funciones de Bessel asociadas a dicha ecuación. Dado que la ecuación anterior es una ecuación diferencial de segundo orden, tiene dos soluciones linealmente independientes. Aunque y dan como resultado la misma función, es conveniente definir diferentes funciones de Bessel para estos dos parámetros, pues las funciones de Bessel en función del parámetro son funciones suaves casi doquiera. Las funciones de Bessel se denominan también funciones cilíndricas, o armónicos cilíndricos porque son solución de la ecuación de Laplace en coordenadas cilíndricas.
rdf:langString
La función de Airy Ai(x) es una función especial, llamada así por el astrónomo británico George Biddell Airy (1801–1892). La función Ai(x) y la función relacionada Bi(x), también llamada a veces función de Airy, son soluciones linealmente independientes de la ecuación diferencial ordinaria:. Esta ecuación diferencial recibe el nombre de ecuación de Airy o ecuación de Stokes. Es la ecuación diferencial lineal de segundo orden más simple que posee un punto donde la solución pasa de tener un comportamiento oscilatorio a un (de)crecimiento exponencial. Además la función de Airy es una solución a la ecuación de Schrödinger para una partícula confinada dentro de un pozo potencial triangular y también la solución para el movimiento unidimensional de una partícula cuántica afectada por una fuerza constante.
rdf:langString
La fonction d'Airy Ai est une des fonctions spéciales en mathématiques, c'est-à-dire une des fonctions remarquables apparaissant fréquemment dans les calculs. Elle porte le nom de l'astronome britannique George Biddell Airy, qui l'introduisit pour ses calculs d'optique, notamment lors de l'étude de l'arc-en-ciel. La fonction d'Airy Ai et la fonction Bi, qu'on appelle fonction d'Airy de seconde espèce, sont des solutions de l'équation différentielle linéaire d'ordre deux connue sous le nom d'équation d'Airy.
rdf:langString
En mathématiques, et plus précisément en analyse, les fonctions de Bessel, appelées aussi quelquefois fonctions cylindriques, découvertes par le mathématicien suisse Daniel Bernoulli, portent le nom du mathématicien allemand Friedrich Wilhelm Bessel. Bessel développa l'analyse de ces fonctions en 1816 dans le cadre de ses études du mouvement des planètes induit par l'interaction gravitationnelle, généralisant les découvertes antérieures de Bernoulli. Ces fonctions sont des solutions canoniques y(x) de l'équation différentielle de Bessel : pour tout nombre réel ou complexe α. Le plus souvent, α est un entier naturel (alors appelé l'ordre de la fonction), ou un demi-entier. Il existe deux sortes de fonctions de Bessel :
* les fonctions de Bessel de première espèce, Jn, solutions de l'équation différentielle ci-dessus qui sont définies en 0 ;
* les fonctions de Bessel de seconde espèce, Yn, solutions qui ne sont pas définies en 0 (mais qui ont une limite infinie en 0). Les représentations graphiques des fonctions de Bessel ressemblent à celles des fonctions sinus ou cosinus, mais s'amortissent comme s'il s'agissait de fonctions sinus ou cosinus divisées par un terme de la forme √x. Les fonctions de Bessel sont aussi connues sous le nom de fonctions cylindriques, ou d'harmoniques cylindriques, parce qu'elles font partie des solutions de l'équation de Laplace en coordonnées cylindriques (intervenant, par exemple, dans la propagation de la chaleur dans un cylindre). Elles interviennent dans beaucoup de problèmes physiques présentant une symétrie cylindrique:
* les ondes électromagnétiques ou les ondes acoustiques dans un guide cylindrique (antenne ou tuyau) ;
* les modes de vibration d'une fine membrane circulaire ou annulaire ;
* l'étude d'instruments d'optique comme les fibres optiques constituées d'un cœur et d'une gaine optique concentriques;
* le pendule de Bessel ;
* les phénomènes de diffraction par une fente circulaire ;
* l'étude de la modulation de fréquence en télécommunications.
rdf:langString
In analisi matematica le armoniche cilindriche, definite per la prima volta da Daniel Bernoulli e successivamente rinominate da Bessel di cui talvolta prendono il nome (in modo erroneo nell'insieme, sono in realtà una loro sottoclasse), sono le soluzioni canoniche delle equazioni di Bessel: per un numero arbitrario (che rappresenta l'ordine della funzione). Poiché contengono la gamma di Eulero, il più comune e importante caso particolare è quello in cui è un numero intero , in cui la situazione si semplifica notevolmente col fattoriale e le armoniche acquisiscono altre proprietà particolari.Si può notare innanzitutto (per la parità della funzione in ) che e hanno la stessa soluzione, per cui si usa definire convenzionalmente due differenti funzioni di Bessel per questi due ordini.Uno dei settori nel quale vengono usate è la teoria dei segnali, in particolare nel settore della modulazione dei segnali per le trasmissioni. Nello specifico le armoniche cilindriche compaiono nello sviluppo in Serie di Fourier di un segnale modulato in frequenza (FM) o di un segnale modulato in fase (PM), quando il segnale di ingresso è una sinusoide.
rdf:langString
ベッセル関数(ベッセルかんすう、英: Bessel function)とは、最初にスイスの数学者ダニエル・ベルヌーイによって定義され、フリードリヒ・ヴィルヘルム・ベッセルにちなんで名づけられた関数。円筒関数と呼ばれることもある。以下に示す、ベッセルの微分方程式におけるの特殊解の1つである。 上の式において、は、任意の実数である(次数と呼ばれる)。が整数に等しい場合がとくに重要である。 及びはともに同一の微分方程式を与えるが、慣例としてこれら2つの異なる次数に対して異なるベッセル関数が定義される(例えば、の関数としてなるべく滑らかになるようにベッセル関数を定義する、など)。 そもそもベッセル関数は、惑星の軌道運動に関するケプラー方程式をベッセルが解析的に解いた際に導入された。
rdf:langString
수학에서 에어리 함수(Airy function)는 특수 함수의 한 종류다. 두 개가 있으며, 기호는 Ai와 Bi다. 조지 비델 에어리가 광학을 연구하기 위해 1838년에 도입하였다.
rdf:langString
エアリー関数(エアリーかんすう、英: Airy function)あるいは第一種エアリー関数 (Airy function of the first kind) Ai(x) は、イギリスの天文学者ジョージ・ビドル・エアリー (1801–92) に因んで名づけられた特殊関数である。この関数 Ai(x) および第二種エアリー関数とも呼ばれる関連の関数(A を次の文字 B に変えて、故に冗談めかしてベアリー (Biry) 関数とも)Bi(x) は、エアリー方程式あるいはストークス方程式と呼ばれる微分方程式 の線型独立な解としても言及される。これは転回点(turning point: 方程式の解が振動型から指数型へ変わる特徴点)を持つ最も単純な二階線型微分方程式である。 エアリー関数は三角ポテンシャル井戸に留め置かれた粒子に対する、あるいは一次元定力場における粒子に対するシュレーディンガー方程式の解である。同じ理由により、ポテンシャルが位置の線型関数で局所近似されるときの、転回点の周りでのWKB近似として、エアリー関数は一様半古典近似を与えるのに利用できる。三角ポテンシャル井戸解は、多くの半導体デバイスを理解することに直接的に関係がある。 エアリー関数はまた、虹のような方向性の周辺強度の形でも根底にある。歴史的にはこれがエアリーがこの特殊関数を導入するに至った数学的問題であった。またエアリー関数はや天文学においても重要である。つまり、エアリー関数は(顕微鏡や望遠鏡の解像限界よりも小さな)によって与えられる回折や干渉のパターンを記述する。
rdf:langString
수학에서 베셀 함수(Bessel function)는 헬름홀츠 방정식을 원통좌표계에서 변수분리할 때 등장하는 특수 함수다. 물리학에서 맥스웰 방정식이나 열 방정식, 슈뢰딩거 방정식 등 다양한 문제를 풀 때 쓰인다.
rdf:langString
Besselfuncties zijn oplossingen van de besselse differentiaalvergelijking. Ze worden zo genoemd naar de wiskundige en astronoom Friedrich Wilhelm Bessel, die de vergelijking uitwerkte. Hij deed dit met het doel de verstoring te berekenen die drie hemellichamen op elkaars baan uitoefenen; voorbereidend werk was door anderen gedaan, maar Bessels vergelijking was meer algemeen geldig. Besselfuncties worden onderscheiden naar besselfuncties van de eerste soort en van de tweede soort. De besselfunctie van de eerste soort van de orde wordt genoteerd als , en die van de tweede soort van de orde als . De besselvergelijking kan echter ook worden gebruikt om oplossingen te vinden voor de vergelijkingen van Laplace en van Helmholtz, wanneer daarbij cilindercoördinaten worden gebruikt. Daardoor zijn besselfuncties vooral van belang bij veel vraagstukken uit de wiskundige natuurkunde, zoals vragen omtrent golfvoortplanting, statische spanning enzovoort. Enkele voorbeelden zijn:
* elektromagnetische golven in een cilindrische golfgeleider
* warmtegeleiding in een cilindervormig voorwerp
* trillingswijzen van een dun cirkel- of ringvormig membraan
* verstrooiingsproblemen in een tralie.
* componentamplitudes bij frequentiemodulatie (FM): zie de grafiek
* bepaling van grondwaterstanden bij onttrekkingen.
rdf:langString
In matematica le funzioni di Airy sono due funzioni speciali indicate rispettivamente con e che traggono il nome da quello dell'astronomo inglese George Biddell Airy (1801-1892). Esse costituiscono le soluzioni dell'equazione differenziale ordinaria, detta "di Airy", . Questa è la più semplice equazione differenziale lineare del secondo ordine dotata di un punto in cui il carattere delle soluzioni passa da oscillatorio a esponenziale. Spesso con il nome di "funzione di Airy" si intende la sola .Tale funzione può sorgere per esempio dall'equazione di Helmholtz in una sola dimensione (ordinaria): , nel caso in cui la componente del vettore d'onda dipenda dalla radice della direzione: .
rdf:langString
A Função de Bessel, foi definida pela primeira vez por Daniel Bernoulli e generalizada por Friedrich Bessel. Ela é a solução da equação diferencial: para um número real . Ela é denominada equação de Bessel de índice .
rdf:langString
Funkcje Bessela – rozwiązania równania różniczkowego drugiego stopnia ze zmiennymi współczynnikami (równania Bessela): gdzie jest dowolną liczbą rzeczywistą. Szczególnym przypadkiem, o szerokim zastosowaniu (m.in. w analizie rozkładu pola elektromagnetycznego czy przetwarzaniu sygnałów) są równania, gdzie α jest liczbą naturalną zwaną rzędem funkcji Bessela. Ponieważ mamy do czynienia z równaniem różniczkowym drugiego rzędu, musimy otrzymać dwa liniowo niezależne rozwiązania.
rdf:langString
Фу́нкция Э́йри — частное решение дифференциального уравнения называемого уравнением Эйри (впервые рассмотрено и исследовано в 1838 году британским астрономом Джорджем Бидделем Эйри). Это — простейшее дифференциальное уравнение, имеющее на действительной оси точку, в которой вид решения меняется с колеблющегося на экспоненциальный. Обычно термин «функция Эйри» применяется к двум специальным функциям — функции Эйри 1-го рода (которая при имеет колебательное поведение с постепенным уменьшением амплитуды колебаний, а при монотонно убывает по экспоненциальному закону) и функции Эйри 2-го рода (которая при также колеблется с постепенным уменьшением амплитуды колебаний, а при монотонно растёт по экспоненциальному закону); остальные частные решения уравнения Эйри представимы как линейные комбинации двух данных функций. Обозначение Ai для первой из этих функций предложил в 1928 году Гарольд Джеффрис, использовавший первые две буквы фамилии Эйри (англ. Airy). В 1946 году добавил обозначение Bi для функции Эйри 2-го рода, также ставшее стандартным. В. А. Фок предложил для обозначения функций Ai и Bi символы U и V соответственно. Функция Эйри является решением уравнения Шрёдингера для частицы в треугольной потенциальной яме.
rdf:langString
Inom matematiken är besselfunktionerna lösningarna till differentialekvationen . Denna ekvation uppkommer när man tittar på den radiella delen av Laplaces ekvation i cylindriska koordinater.
rdf:langString
Функція Ейрі Ai(x) — спеціальна функція, названа на честь британського астронома Джорджа Бідделя Ейрі. Функції Ai(x) та пов'язана з нею Bi(x), яка називається функцією Ейрі другого роду, є лінійно незалежними розв'язками диференціального рівняння , що називається рівнянням Ейрі. Це найпростіше диференціальне рівняння що має точку, в якій вид розв'язку замінюється з коливального на експоненційний. Функція Ейрі описує те, як зірка (точкове джерело світла) виглядає в телескопі. Ідеальна точка перетворюється в набір концентричних кіл, в силу обмеженої апертури та хвильової природи світла. Функція Ейрі також є розв'язком стаціонарного рівняння Шредінгера для частки, що рухається в однорідному полі, наприклад, електричному.
rdf:langString
Фу́нкции Бе́сселя в математике — семейство функций, являющихся каноническими решениями дифференциального уравнения Бесселя: где — произвольное вещественное число (в общем случае комплексное), называемое порядком. Наиболее часто используемые функции Бесселя — функции целых порядков. Хотя и порождают одинаковые уравнения, обычно договариваются о том, чтобы им соответствовали разные функции (это делается, например, для того, чтобы функция Бесселя была гладкой по ). Функции Бесселя впервые были определены швейцарским математиком Даниилом Бернулли, а названы в честь Фридриха Бесселя.
rdf:langString
Функції Бесселя в математиці — сімейство функцій, що є канонічними розв'язками диференціального рівняння Бесселя: де — довільне дійсне число, зване порядком. Найчастіше використовувані функції Бесселя — функції цілих та напівцілих порядків. Хоча і породжують однакові рівняння, зазвичай домовляються про те, щоб їм відповідали різні функції (це робиться, наприклад, для того, щоб функція Бесселя була гладкою по ). Функції Бесселя вперше були визначені швейцарським математиком Даніелем Бернуллі, а названі на честь Фрідріха Бесселя.
rdf:langString
艾里函数(Ai(x)),英国英格蘭天文学家、數學家喬治·比德爾·艾里命名的特殊函数,他在1838年研究光学的时候遇到了这个函数。Ai(x)的记法是Harold Jeffreys引进的。Ai(x)与相关函数Bi(x)(也称为艾里函数),是以下微分方程的解: 这个方程称为艾里方程或斯托克斯方程。这是最简单的二阶线性微分方程,它有一个转折点,在这一点函数由周期性的振动转变为指数增长(或衰减)。
rdf:langString
贝塞尔函数(Bessel functions),是数学上的一类特殊函数的总称。通常单说的贝塞尔函数指(Bessel function of the first kind)。一般贝塞尔函数是下列常微分方程(一般称为贝塞尔方程)的标准解函数: 该方程的通解无法用初等函数表示。 由於贝塞尔微分方程是二階常微分方程,需要由兩個獨立的函數來表示其标准解函数。典型的是使用和來表示标准解函数: 注意,由於 在 x=0 時候是發散的(無窮),當取 x=0 時,相關係數 必須為0時,才能獲得有物理意義的結果。 贝塞尔函数的具体形式随上述方程中任意实数或複數α变化而变化(相应地,α被称为其对应贝塞尔函数的阶数)。实际应用中最常见的情形为α是整数n,对应解称为n 阶贝塞尔函数。 尽管在上述微分方程中,α本身的正负号不改变方程的形式,但实际应用中仍习惯针对α和−α定义两种不同的贝塞尔函数(这样做能带来好处,比如消除了函数在α=0 点的不光滑性)。 贝塞尔函數也被稱為柱諧函數、圓柱函數或圓柱諧波,因為他們是於拉普拉斯方程在圓柱坐標上的求解過程中被發現的。
xsd:nonNegativeInteger
65810