Bayesian linear regression
http://dbpedia.org/resource/Bayesian_linear_regression an entity of type: Thing
Байесовская линейная регрессия — это подход в линейной регрессии, в котором статистический анализ проводится в контексте байесовского вывода: когда регрессионная модель имеет , имеющие нормальное распределение, и, если принимается определённая форма априорного распределения, доступны явные результаты для апостериорных распределений вероятностей параметров модели.
rdf:langString
Ба́єсова ліні́йна регре́сія в статистиці — це підхід до лінійної регресії, в якому статистичний аналіз застосовується в контексті баєсового висновування. Якщо помилки регресійної моделі мають нормальний розподіл і якщо розглядається певна форма апріорного розподілу, то для апостеріорного розподілу ймовірності параметрів моделі доступні точні результати.
rdf:langString
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled ) conditional on observed values of the regressors (usually ). The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors gener
rdf:langString
rdf:langString
Bayesian linear regression
rdf:langString
Байесовская линейная регрессия
rdf:langString
Баєсова лінійна регресія
xsd:integer
7519917
xsd:integer
1103973111
rdf:langString
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often labelled ) conditional on observed values of the regressors (usually ). The simplest and most widely used version of this model is the normal linear model, in which given is distributed Gaussian. In this model, and under a particular choice of prior probabilities for the parameters—so-called conjugate priors—the posterior can be found analytically. With more arbitrarily chosen priors, the posteriors generally have to be approximated.
rdf:langString
Байесовская линейная регрессия — это подход в линейной регрессии, в котором статистический анализ проводится в контексте байесовского вывода: когда регрессионная модель имеет , имеющие нормальное распределение, и, если принимается определённая форма априорного распределения, доступны явные результаты для апостериорных распределений вероятностей параметров модели.
rdf:langString
Ба́єсова ліні́йна регре́сія в статистиці — це підхід до лінійної регресії, в якому статистичний аналіз застосовується в контексті баєсового висновування. Якщо помилки регресійної моделі мають нормальний розподіл і якщо розглядається певна форма апріорного розподілу, то для апостеріорного розподілу ймовірності параметрів моделі доступні точні результати.
xsd:nonNegativeInteger
18548