Bayesian game

http://dbpedia.org/resource/Bayesian_game

Bayesovské hry jsou takové modely teorie her, které nemají omezení předpokladu kompletní informace, tedy nevyžadují úplnou znalost pravidel všemi hráči. Poprvé byly definovány v práci Johna C. Harsanyi. Teorie her z uvedení Bayesovských her silně profitovala, protože ve většině reálných situací hráči nemají kompletní informace o situaci, ve které se nacházejí, ať už se to týká charakteristik ostatních hráčů, informacích o výsledcích her anebo vlastních alternativ v určitém bodě hry. Asymetrie informací je běžným aspektem, který se pomocí běžných konceptů teorie her také nedá simulovat. rdf:langString
Ein Bayes-Spiel (IPA: [ˈbɛɪ̯zˌʃpiːl], ), bayessches Spiel, oder bayesianisches Spiel, bezeichnet in der Spieltheorie ein Spiel mit unvollständiger Information, welches nach dem englischen Mathematiker Thomas Bayes benannt ist. Der Satz von Bayes, mit dessen Hilfe man bedingte Wahrscheinlichkeiten berechnen kann, bildet die Grundlage für Lösungskonzepte dieser Spielart. Bayes-Spiele sind als Spiele mit imperfekter Information modellierbar. rdf:langString
En théorie des jeux, un jeu bayésien est un jeu dans lequel l'information dont dispose chaque joueur sur les caractéristiques des autres joueurs est incomplète. En particulier, on représente ainsi un jeu dans lequel un ou plusieurs joueurs font face à une incertitude quant au gain des autres joueurs. Cette situation impose de spécifier pour chaque joueur des croyances concernant les caractéristiques des autres joueurs. Du fait de l'hypothèse de rationalité, ces croyances prennent la forme d'une distribution de probabilités sur toutes les caractéristiques possibles. Partant d'une distribution a priori, les joueurs actualisent leurs croyances en fonction des choix faits par l'autre joueur, en utilisant la règle de Bayes, d'où la dénomination de ces jeux. rdf:langString
게임 이론에서 베이즈 게임(Bayesian game)은 베이즈 확률론의 관점을 이용하여 경기자의 상호작용의 결과를 모형화한 게임이다. 베이즈 게임은 미비정보(incomplete information)하에서의 게임의 해를 게임 이론을 통해 구할 수 있도록 했다는 점에서 의미가 있다. 베이즈 게임은 헝가리의 경제학자 존 하사니의 3편의 논문에서 소개되었다. 베이즈 게임이라는 개념을 도입한 존 하사니는 1994년 게임 이론에 대한 공헌으로 1994년 노벨 경제학상을 받았다. rdf:langString
在博弈论中,贝叶斯博弈(英語:Bayesian game)所指的是:博弈参与者对于对手的收益函数,無法獲得完全訊息(complete information);因此贝叶斯博弈也被称为不完全訊息博弈。因為使用了貝葉斯法則(Bayes' rule)來進行機率分析,因此得名。 匈牙利经济学家海萨尼·亚诺什·卡罗伊在1967年和1968年的三篇论文中介绍了贝叶斯博弈的概念,这些研究使他获得了1994年的诺贝尔经济学奖。 rdf:langString
In game theory, a Bayesian game is a game that models the outcome of player interactions using aspects of Bayesian probability. Bayesian games are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information. rdf:langString
En teoría de juegos, un juego bayesiano es uno en el cual la información sobre las características de los otros jugadores es incompleta. A raíz de las ideas de John Harsanyi,​ un juego bayesiano puede ser modelado mediante la introducción de la naturaleza como un jugador en un juego. La naturaleza asigna una variable aleatoria a cada jugador que podría tomar valores de tipos para cada jugador y las probabilidades de asociación o una función de densidad de probabilidad con esos tipos, en el transcurso de la partida, la naturaleza elige aleatoriamente un tipo para cada jugador de acuerdo con la distribución de probabilidad a través cada del espacio de características de jugador. Harsanyi propone un enfoque para modelar un juego bayesiano de tal manera permite que los juegos de información in rdf:langString
Nella teoria dei giochi, un gioco bayesiano è un gioco in cui le informazioni dei giocatori sulle caratteristiche degli altri giocatori (per esempio i loro payoff) sono incomplete. Seguendo il suggerimento di John C. Harsanyi si può modellizzare un gioco di questo tipo inserendo la Natura tra i giocatori, cioè immaginando che le caratteristiche dei giocatori siano "estratte a sorte". rdf:langString
ベイジアンゲーム (英: bayesian game) とは、他のプレーヤーの特性 (利得など) に関する情報が不完備であるゲームである。ジョン・ハーサニの枠組みに従うと、ベイジアンゲームは、ゲームに自然 (Nature) というプレーヤーを導入することでモデル化できる。自然は各プレーヤーに、そのプレーヤーのタイプの値をとる確率変数を割りあて、それらのタイプの上に確率ないし確率密度関数を関連づける (ゲーム理論の教科書では、自然は各プレーヤーのタイプ空間の上の確率分布に従ってタイプを無作為に選ぶとする)。このようにベイジアンゲームをモデル化するハーサニの手法では、不完備情報のゲームは不完全情報のゲーム (すべてのプレーヤーにとってゲームの歴史がわからないもの) に変えられている。プレーヤーのタイプはそのプレーヤーの利得関数を決定する。そのタイプに関連づけられる確率は、そのタイプが特定化されるプレーヤーがそのタイプである確率である。ベイジアンゲームで情報の不完備性というのは、少なくとも1人のプレーヤーが他のプレーヤーのタイプ (利得関数) について確信がないということを意味している。 rdf:langString
Байесовская игра (англ. Bayesian game) или игра с неполной информацией (англ. incomplete information game) в теории игр характеризуются неполнотой информации о соперниках (их возможных стратегиях и выигрышах), при этом у игроков есть веры относительно этой неопределённости. Байесовскую игру можно преобразовать в игру полной, но информации, если принять допущение об общем априорном распределении. В отличие от неполной информации, несовершенная информация включает знание стратегий и выигрышей соперников, но история игры (предыдущие действия оппонентов) доступна не всем участникам. rdf:langString
rdf:langString Bayesovská hra
rdf:langString Bayes-Spiel
rdf:langString Juego bayesiano
rdf:langString Bayesian game
rdf:langString Jeu bayésien
rdf:langString Gioco bayesiano
rdf:langString ベイジアンゲーム
rdf:langString 베이즈 게임
rdf:langString Игра с неполной информацией
rdf:langString 贝叶斯博弈
xsd:integer 1863423
xsd:integer 1104912559
rdf:langString Bayesovské hry jsou takové modely teorie her, které nemají omezení předpokladu kompletní informace, tedy nevyžadují úplnou znalost pravidel všemi hráči. Poprvé byly definovány v práci Johna C. Harsanyi. Teorie her z uvedení Bayesovských her silně profitovala, protože ve většině reálných situací hráči nemají kompletní informace o situaci, ve které se nacházejí, ať už se to týká charakteristik ostatních hráčů, informacích o výsledcích her anebo vlastních alternativ v určitém bodě hry. Asymetrie informací je běžným aspektem, který se pomocí běžných konceptů teorie her také nedá simulovat.
rdf:langString In game theory, a Bayesian game is a game that models the outcome of player interactions using aspects of Bayesian probability. Bayesian games are notable because they allowed, for the first time in game theory, for the specification of the solutions to games with incomplete information. Hungarian economist John C. Harsanyi introduced the concept of Bayesian games in three papers from 1967 and 1968: He was awarded the Nobel Prize for these and other contributions to game theory in 1994. Roughly speaking, Harsanyi defined Bayesian games in the following way: players are assigned by nature at the start of the game a set of characteristics. By mapping probability distributions to these characteristics and by calculating the outcome of the game using Bayesian probability, the result is a game whose solution is, for technical reasons, far easier to calculate than a similar game in a non-Bayesian context. For those technical reasons, see the Specification of games section in this article.
rdf:langString Ein Bayes-Spiel (IPA: [ˈbɛɪ̯zˌʃpiːl], ), bayessches Spiel, oder bayesianisches Spiel, bezeichnet in der Spieltheorie ein Spiel mit unvollständiger Information, welches nach dem englischen Mathematiker Thomas Bayes benannt ist. Der Satz von Bayes, mit dessen Hilfe man bedingte Wahrscheinlichkeiten berechnen kann, bildet die Grundlage für Lösungskonzepte dieser Spielart. Bayes-Spiele sind als Spiele mit imperfekter Information modellierbar.
rdf:langString En teoría de juegos, un juego bayesiano es uno en el cual la información sobre las características de los otros jugadores es incompleta. A raíz de las ideas de John Harsanyi,​ un juego bayesiano puede ser modelado mediante la introducción de la naturaleza como un jugador en un juego. La naturaleza asigna una variable aleatoria a cada jugador que podría tomar valores de tipos para cada jugador y las probabilidades de asociación o una función de densidad de probabilidad con esos tipos, en el transcurso de la partida, la naturaleza elige aleatoriamente un tipo para cada jugador de acuerdo con la distribución de probabilidad a través cada del espacio de características de jugador. Harsanyi propone un enfoque para modelar un juego bayesiano de tal manera permite que los juegos de información incompleta se conviertan en juegos de información imperfecta, en el que la historia del juego no está disponible para todos los jugadores. En un juego bayesiano, el carácter incompleto de la información significa que al menos un jugador no está seguro del tipo del otro jugador. Tales juegos se denominan bayesianos por el análisis probabilístico inherente en el juego. Los jugadores tienen creencias iniciales sobre el tipo de cada jugador (una creencia es una distribución de probabilidad sobre los tipos posibles de un jugador) y se pueden actualizar sus creencias de acuerdo con la regla de Bayes conforme se lleva a cabo el juego, es decir, la creencia de que un jugador tiene sobre el tipo de otro jugador podría cambiar en función de las acciones que han jugado. La falta de información en manos de los jugadores y el modelado de las creencias significa que este tipo de juegos también se utilizan para analizar escenarios de información imperfecta.
rdf:langString Nella teoria dei giochi, un gioco bayesiano è un gioco in cui le informazioni dei giocatori sulle caratteristiche degli altri giocatori (per esempio i loro payoff) sono incomplete. Seguendo il suggerimento di John C. Harsanyi si può modellizzare un gioco di questo tipo inserendo la Natura tra i giocatori, cioè immaginando che le caratteristiche dei giocatori siano "estratte a sorte". Tali giochi sono chiamati bayesiani a causa della analisi probabilistica inerente al gioco. I giocatori hanno inizialmente convinzioni o credenze (belief) riguardo ai tipi degli altri giocatori (dove un belief è una distribuzione di probabilità sui possibili tipi per un giocatore), e li aggiornano secondo la regola di Bayes in modo da tenere conto della nuova informazione ricevuta nel corso del gioco.
rdf:langString En théorie des jeux, un jeu bayésien est un jeu dans lequel l'information dont dispose chaque joueur sur les caractéristiques des autres joueurs est incomplète. En particulier, on représente ainsi un jeu dans lequel un ou plusieurs joueurs font face à une incertitude quant au gain des autres joueurs. Cette situation impose de spécifier pour chaque joueur des croyances concernant les caractéristiques des autres joueurs. Du fait de l'hypothèse de rationalité, ces croyances prennent la forme d'une distribution de probabilités sur toutes les caractéristiques possibles. Partant d'une distribution a priori, les joueurs actualisent leurs croyances en fonction des choix faits par l'autre joueur, en utilisant la règle de Bayes, d'où la dénomination de ces jeux.
rdf:langString ベイジアンゲーム (英: bayesian game) とは、他のプレーヤーの特性 (利得など) に関する情報が不完備であるゲームである。ジョン・ハーサニの枠組みに従うと、ベイジアンゲームは、ゲームに自然 (Nature) というプレーヤーを導入することでモデル化できる。自然は各プレーヤーに、そのプレーヤーのタイプの値をとる確率変数を割りあて、それらのタイプの上に確率ないし確率密度関数を関連づける (ゲーム理論の教科書では、自然は各プレーヤーのタイプ空間の上の確率分布に従ってタイプを無作為に選ぶとする)。このようにベイジアンゲームをモデル化するハーサニの手法では、不完備情報のゲームは不完全情報のゲーム (すべてのプレーヤーにとってゲームの歴史がわからないもの) に変えられている。プレーヤーのタイプはそのプレーヤーの利得関数を決定する。そのタイプに関連づけられる確率は、そのタイプが特定化されるプレーヤーがそのタイプである確率である。ベイジアンゲームで情報の不完備性というのは、少なくとも1人のプレーヤーが他のプレーヤーのタイプ (利得関数) について確信がないということを意味している。 このようなゲームは、ゲームに備わっている確率的分析のためにベイジアンと呼ばれている。プレーヤーたちは各プレーヤーのタイプについて事前の信念をもっており (ここで信念とは、プレーヤーのとりうるタイプの上の確率分布)、ゲームにおいて行動がとられるにつれてベイズルールに従って信念を更新しうる、すなわち、他のプレーヤーのタイプについてプレーヤーがもつ信念は、プレーヤーたちがとった行動にもとづいて変化していく。プレーヤーたちがもっている情報の不足と、信念のモデリングとは、このようなゲームが不完備情報のシナリオを分析するためにも使えることを意味している。
rdf:langString 게임 이론에서 베이즈 게임(Bayesian game)은 베이즈 확률론의 관점을 이용하여 경기자의 상호작용의 결과를 모형화한 게임이다. 베이즈 게임은 미비정보(incomplete information)하에서의 게임의 해를 게임 이론을 통해 구할 수 있도록 했다는 점에서 의미가 있다. 베이즈 게임은 헝가리의 경제학자 존 하사니의 3편의 논문에서 소개되었다. 베이즈 게임이라는 개념을 도입한 존 하사니는 1994년 게임 이론에 대한 공헌으로 1994년 노벨 경제학상을 받았다.
rdf:langString Байесовская игра (англ. Bayesian game) или игра с неполной информацией (англ. incomplete information game) в теории игр характеризуются неполнотой информации о соперниках (их возможных стратегиях и выигрышах), при этом у игроков есть веры относительно этой неопределённости. Байесовскую игру можно преобразовать в игру полной, но информации, если принять допущение об общем априорном распределении. В отличие от неполной информации, несовершенная информация включает знание стратегий и выигрышей соперников, но история игры (предыдущие действия оппонентов) доступна не всем участникам. Джон Харсаньи описал байесовские игры следующим образом. В дополнение к фактическим участникам игры появляется виртуальный игрок «Природа». Природа наделяет каждого из фактических участников случайной переменной, значения которой называются типами. Распределение (плотность или функция вероятности) типов для каждого из игроков известно. В начале игры природа «выбирает» типы игроков. Тип, в частности, определяет функцию выигрыша участника. Таким образом, неполнота информации в байесовской игре — незнание по крайней мере одним игроком типа некого другого участника. Игроки обладают верами относительно типов соперников; вера — вероятностное распределение на множестве возможных типов. В процессе игры веры обновляются в соответствии с теоремой Байеса.
rdf:langString 在博弈论中,贝叶斯博弈(英語:Bayesian game)所指的是:博弈参与者对于对手的收益函数,無法獲得完全訊息(complete information);因此贝叶斯博弈也被称为不完全訊息博弈。因為使用了貝葉斯法則(Bayes' rule)來進行機率分析,因此得名。 匈牙利经济学家海萨尼·亚诺什·卡罗伊在1967年和1968年的三篇论文中介绍了贝叶斯博弈的概念,这些研究使他获得了1994年的诺贝尔经济学奖。
xsd:nonNegativeInteger 19033

data from the linked data cloud