Asymmetric simple exclusion process
http://dbpedia.org/resource/Asymmetric_simple_exclusion_process an entity of type: WikicatStochasticProcesses
Der ASEP (kurz für engl. “asymmetric simple exclusion process”; dt.: „asymmetrischer einfacher Ausschluss-Prozess“) ist in der Mathematik bzw. Statistik das Musterbeispiel eines Teilchenhüpfprozesses, bzw. eines getriebenen Nicht-Gleichgewicht-Systems. Dabei springen „Teilchen“ auf einem eindimensionalen Gitter von einem Gitterpunkt zum nächsten.
rdf:langString
In probability theory, the asymmetric simple exclusion process (ASEP) is an interacting particle system introduced in 1970 by Frank Spitzer. Many articles have been published on it in the physics and mathematics literature since then, and it has become a "default stochastic model for transport phenomena".
rdf:langString
rdf:langString
ASEP
rdf:langString
Asymmetric simple exclusion process
xsd:integer
37646664
xsd:integer
1020757184
rdf:langString
Der ASEP (kurz für engl. “asymmetric simple exclusion process”; dt.: „asymmetrischer einfacher Ausschluss-Prozess“) ist in der Mathematik bzw. Statistik das Musterbeispiel eines Teilchenhüpfprozesses, bzw. eines getriebenen Nicht-Gleichgewicht-Systems. Dabei springen „Teilchen“ auf einem eindimensionalen Gitter von einem Gitterpunkt zum nächsten.
rdf:langString
In probability theory, the asymmetric simple exclusion process (ASEP) is an interacting particle system introduced in 1970 by Frank Spitzer. Many articles have been published on it in the physics and mathematics literature since then, and it has become a "default stochastic model for transport phenomena". The process with parameters is a continuous-time Markov process on ,the 1s being thought of as particles and the 0s as holes. Each particle waits a randomexponent mean one amount of time and then attempts a jump, one site to the rightwith probability and one site to the left with probability . However, the jump is performed only if there is no particle at the target site. Otherwise, nothing happens and the particle waits another exponential time. All particles are doing this independently of each other. The model is related to the Kardar–Parisi–Zhang equation in the weakly asymmetric limit, i.e. when tends to zero under some particular scaling. Recently, progress has been made to understand the statistics of the current of particles and it appears that the Tracy–Widom distribution plays a key role.
xsd:nonNegativeInteger
2981