Ascending chain condition on principal ideals
http://dbpedia.org/resource/Ascending_chain_condition_on_principal_ideals
抽象代数学において、昇鎖条件は包含関係による半順序が入った環の主左、主右、あるいは主両側イデアルの半順序集合に適用することができる。主イデアルに関する昇鎖条件 (ascending chain condition on principal ideals) (ACCP と省略される)が満たされるとは、環において与えられたタイプ(左/右/両側)の主イデアルの真の無限昇鎖が存在しないということである。あるいは別の言い方をすれば、すべての昇鎖はやがて一定になる。 片割れである降鎖条件もまたこれらの半順序集合に適用することができるが、しかし用語 "DCCP" の必要は現在は全くない、なぜならばそのような環は既に左あるいは右完全環という名前がついているからである。(下のの節を参照。) ネーター環(例えば主イデアル整域)は典型的な例であるが、いくつかの重要な非ネーター環、特に一意分解整域と左または右完全環もまた (ACCP) を満たす。
rdf:langString
In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant.
rdf:langString
rdf:langString
Ascending chain condition on principal ideals
rdf:langString
主イデアルに関する昇鎖条件
xsd:integer
22243102
xsd:integer
1063305291
rdf:langString
InternetArchiveBot
rdf:langString
July 2017
rdf:langString
yes
rdf:langString
In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant. The counterpart descending chain condition may also be applied to these posets, however there is currently no need for the terminology "DCCP" since such rings are already called left or right perfect rings. (See below.) Noetherian rings (e.g. principal ideal domains) are typical examples, but some important non-Noetherian rings also satisfy (ACCP), notably unique factorization domains and left or right perfect rings.
rdf:langString
抽象代数学において、昇鎖条件は包含関係による半順序が入った環の主左、主右、あるいは主両側イデアルの半順序集合に適用することができる。主イデアルに関する昇鎖条件 (ascending chain condition on principal ideals) (ACCP と省略される)が満たされるとは、環において与えられたタイプ(左/右/両側)の主イデアルの真の無限昇鎖が存在しないということである。あるいは別の言い方をすれば、すべての昇鎖はやがて一定になる。 片割れである降鎖条件もまたこれらの半順序集合に適用することができるが、しかし用語 "DCCP" の必要は現在は全くない、なぜならばそのような環は既に左あるいは右完全環という名前がついているからである。(下のの節を参照。) ネーター環(例えば主イデアル整域)は典型的な例であるが、いくつかの重要な非ネーター環、特に一意分解整域と左または右完全環もまた (ACCP) を満たす。
xsd:nonNegativeInteger
6578