Appell series

http://dbpedia.org/resource/Appell_series an entity of type: Abstraction100002137

In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Paul Appell and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable. rdf:langString
阿佩尔函数是法国数学家(Paul Apell)在1880年为推广高斯超几何函数而创建的一组雙变数函数,定义如下 其中的符号是阶乘幂 阿佩尔函数是嫪丽切拉函数和Kampé_de_Fériet函数的特例。 rdf:langString
rdf:langString Appell series
rdf:langString 阿佩尔函数
xsd:integer 19783560
xsd:integer 1123157939
rdf:langString Aarts, Ronald M.
rdf:langString Charles Émile Picard
rdf:langString Giuseppe Lauricella
rdf:langString Paul Émile Appell
rdf:langString Paul
rdf:langString A. B.
rdf:langString Giuseppe
rdf:langString R. A.
rdf:langString Émile
xsd:double 16.13
rdf:langString Askey
rdf:langString Lauricella
rdf:langString Picard
rdf:langString Appell
rdf:langString Olde Daalhuis
rdf:langString Appell Hypergeometric Function
rdf:langString Lauricella Functions
rdf:langString AppellHypergeometricFunction
rdf:langString LauricellaFunctions
xsd:integer 1880 1881 1893
rdf:langString In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Paul Appell and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable.
rdf:langString 阿佩尔函数是法国数学家(Paul Apell)在1880年为推广高斯超几何函数而创建的一组雙变数函数,定义如下 其中的符号是阶乘幂 阿佩尔函数是嫪丽切拉函数和Kampé_de_Fériet函数的特例。
rdf:langString Ronald Aarts
xsd:nonNegativeInteger 15763

data from the linked data cloud