Appell series
http://dbpedia.org/resource/Appell_series an entity of type: Abstraction100002137
In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Paul Appell and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable.
rdf:langString
阿佩尔函数是法国数学家(Paul Apell)在1880年为推广高斯超几何函数而创建的一组雙变数函数,定义如下 其中的符号是阶乘幂 阿佩尔函数是嫪丽切拉函数和Kampé_de_Fériet函数的特例。
rdf:langString
rdf:langString
Appell series
rdf:langString
阿佩尔函数
xsd:integer
19783560
xsd:integer
1123157939
rdf:langString
Aarts, Ronald M.
rdf:langString
Charles Émile Picard
rdf:langString
Giuseppe Lauricella
rdf:langString
Paul Émile Appell
rdf:langString
Paul
rdf:langString
A. B.
rdf:langString
Giuseppe
rdf:langString
R. A.
rdf:langString
Émile
xsd:double
16.13
rdf:langString
Askey
rdf:langString
Lauricella
rdf:langString
Picard
rdf:langString
Appell
rdf:langString
Olde Daalhuis
rdf:langString
Appell Hypergeometric Function
rdf:langString
Lauricella Functions
rdf:langString
AppellHypergeometricFunction
rdf:langString
LauricellaFunctions
xsd:integer
1880
1881
1893
rdf:langString
In mathematics, Appell series are a set of four hypergeometric series F1, F2, F3, F4 of two variables that were introduced by Paul Appell and that generalize Gauss's hypergeometric series 2F1 of one variable. Appell established the set of partial differential equations of which these functions are solutions, and found various reduction formulas and expressions of these series in terms of hypergeometric series of one variable.
rdf:langString
阿佩尔函数是法国数学家(Paul Apell)在1880年为推广高斯超几何函数而创建的一组雙变数函数,定义如下 其中的符号是阶乘幂 阿佩尔函数是嫪丽切拉函数和Kampé_de_Fériet函数的特例。
rdf:langString
Ronald Aarts
xsd:nonNegativeInteger
15763