Alternating sign matrix

http://dbpedia.org/resource/Alternating_sign_matrix an entity of type: Thing

In mathematics, an alternating sign matrix is a square matrix of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant. They are also closely related to the six-vertex model with domain wall boundary conditions from statistical mechanics. They were first defined by William Mills, David Robbins, and Howard Rumsey in the former context. rdf:langString
En mathématique combinatoire, une matrice à signes alternants est une matrice carrée formée de coefficients 0, 1 et −1 de telle sorte que la somme de chaque ligne et de chaque colonne soit égale à 1 et que les signes des coefficients non nuls soient alternés dans chaque ligne et dans chaque colonne. Ces matrices généralisent les matrices de permutation et apparaissent naturellement dans la (en) pour calculer les déterminants. Elles sont aussi liées au modèle à six sommets en physique statistique. Elles ont été introduites pour la première fois par William Mills, David Robbins et Howard Rumsey en lien avec ce modèle. rdf:langString
En matematiko, alterna signa matrico estas kvadrata matrico, ĉiu el eroj de kiu estas de unu el la tri eblaj valoroj 0, 1 kaj -1, tia ke sumo de ĉiu linio kaj kolumno estas 1 kaj la nenulaj elementoj en ĉiu linio kaj kolumno estas alternaj je la signo. Ĉi tiuj matricoj aperas se estas uzata por komputi determinanton. Ili estas ankaŭ proksime rilatantaj al la de statistika mekaniko. Ili estis unue difinitaj de William Mills, David P. Robbins kaj Howard Rumsey en la antaŭa ĉirkaŭteksto. Ekzemple, la permutaj matricoj estas alternaj signaj matricoj. Ekzemplo de alterna signa matrico: rdf:langString
rdf:langString Alterna signa matrico
rdf:langString Alternating sign matrix
rdf:langString Matrice à signes alternants
xsd:integer 1740155
xsd:integer 1082515817
rdf:langString right
rdf:langString The seven alternating sign matrices of size 3
xsd:integer 340
rdf:langString In mathematics, an alternating sign matrix is a square matrix of 0s, 1s, and −1s such that the sum of each row and column is 1 and the nonzero entries in each row and column alternate in sign. These matrices generalize permutation matrices and arise naturally when using Dodgson condensation to compute a determinant. They are also closely related to the six-vertex model with domain wall boundary conditions from statistical mechanics. They were first defined by William Mills, David Robbins, and Howard Rumsey in the former context.
rdf:langString En matematiko, alterna signa matrico estas kvadrata matrico, ĉiu el eroj de kiu estas de unu el la tri eblaj valoroj 0, 1 kaj -1, tia ke sumo de ĉiu linio kaj kolumno estas 1 kaj la nenulaj elementoj en ĉiu linio kaj kolumno estas alternaj je la signo. Ĉi tiuj matricoj aperas se estas uzata por komputi determinanton. Ili estas ankaŭ proksime rilatantaj al la de statistika mekaniko. Ili estis unue difinitaj de William Mills, David P. Robbins kaj Howard Rumsey en la antaŭa ĉirkaŭteksto. Ekzemple, la permutaj matricoj estas alternaj signaj matricoj. Ekzemplo de alterna signa matrico: La alterna signa matrica konjekto statas ke kvanto de n×n alternaj signaj matricoj estas La unua kiu pruvis ĉi tiun konjekton estis Doron Zeilberger en 1992. En 1995, Greg Kuperberg donis mallongan pruvon kiu uzas la , kaj determinantan formulon de Anatoli Izergin kaj Vladimir Korepin, aplikitan al la kvadrata glacia interpretado.
rdf:langString En mathématique combinatoire, une matrice à signes alternants est une matrice carrée formée de coefficients 0, 1 et −1 de telle sorte que la somme de chaque ligne et de chaque colonne soit égale à 1 et que les signes des coefficients non nuls soient alternés dans chaque ligne et dans chaque colonne. Ces matrices généralisent les matrices de permutation et apparaissent naturellement dans la (en) pour calculer les déterminants. Elles sont aussi liées au modèle à six sommets en physique statistique. Elles ont été introduites pour la première fois par William Mills, David Robbins et Howard Rumsey en lien avec ce modèle.
xsd:nonNegativeInteger 6197

data from the linked data cloud