Alpha glucan

http://dbpedia.org/resource/Alpha_glucan an entity of type: Abstraction100002137

Los α-glucanos (alfa-glucanos) son polisacárido formados por monómeros de D-glucosa, unidas entre sí por medio de enlaces glucosídicos en configuración alfa. rdf:langString
α-葡聚糖(alpha glucan)是指由α-葡萄糖聚合形成的聚糖。淀粉(包括直链淀粉和支链淀粉)、糖原均属于α-葡聚糖。在淀粉和糖原分子中,主链的不同单体之间由α-1,4-糖苷键聚合而成,在形成支链处,会有α-1,6-糖苷键存在。另外,已有人工合成以α-1,3-糖苷键聚合的α-葡聚糖的报导。 rdf:langString
α-Glucans (alpha-glucans) are polysaccharides of D-glucose monomerslinked with glycosidic bonds of the alpha form. α-Glucans use cofactors in a cofactor site in order to activate a glucan phosphorylase enzyme. This enzyme causes a reaction that transfers a glucosyl portion between orthophosphate and α-I,4-glucan. The position of the cofactors to the active sites on the enzyme are critical to the overall reaction rate thus, any alteration to the cofactor site leads to the disruption of the glucan binding site. rdf:langString
rdf:langString Alpha glucan
rdf:langString Alfa glucano
rdf:langString Α-葡聚糖
xsd:integer 23850944
xsd:integer 1055507035
rdf:langString α-Glucans (alpha-glucans) are polysaccharides of D-glucose monomerslinked with glycosidic bonds of the alpha form. α-Glucans use cofactors in a cofactor site in order to activate a glucan phosphorylase enzyme. This enzyme causes a reaction that transfers a glucosyl portion between orthophosphate and α-I,4-glucan. The position of the cofactors to the active sites on the enzyme are critical to the overall reaction rate thus, any alteration to the cofactor site leads to the disruption of the glucan binding site. Alpha-glucan is also commonly found in bacteria, yeasts, plants, and insects. Whereas the main pathway of α-glucan synthesis is via glycosidic bonds of glucose monomers, α-glucan can be comparably synthesized via the maltosyl transferase GlgE and branching enzyme GlgB. This alternative pathway is common in many bacteria, which use GlgB and GlgE or the GlgE pathway exclusively for the biosynthesis of α-glucan. The GlgE pathway is especially prominent in actinomycetes, such as mycobacteria and streptomycetes. However, α-glucans in mycobacteria have a slight variation in the length of linear chains, which point to the fact that the branching enzyme in mycobacteria makes shorter branches compared to glycogen synthesis. For organisms that can utilize both classic glycogen synthesis and the GlgE pathway, only GlgB enzyme is present, which indicates that the GlgB enzyme is shared between both pathways. Other uses for α-glucan have been developed based on its availability in bacteria. The accumulation of glycogen Neisseria polysacchera and other bacteria are able to use in α-glucan to catalyze glucose units to form α-1,4-glucan and liberating fructose in the process. To regulate carbohydrate metabolism, more resistant starch was necessary. An α-glucan coated starch molecule produced from Neisseria polysacchera was able to improve some of the physiochemical properties in comparison to raw normal starch, especially in loading efficiency of bioactive molecules. Alpha-glucan was used in conjunction with modified starch molecules that contained porous starch granules via hydrolysis with amylotic enzymes such as α-amylase, β-amylase, and glucoamylase. An α-glucan coating boasts protection from digestive environments, such as the small intestine, efficient encapsulation, and preservation rates. This design promotes the growth of the development of α-glucan-based bio-materials and many implications for its usage in food and pharmaceutical industries.
rdf:langString Los α-glucanos (alfa-glucanos) son polisacárido formados por monómeros de D-glucosa, unidas entre sí por medio de enlaces glucosídicos en configuración alfa.
rdf:langString α-葡聚糖(alpha glucan)是指由α-葡萄糖聚合形成的聚糖。淀粉(包括直链淀粉和支链淀粉)、糖原均属于α-葡聚糖。在淀粉和糖原分子中,主链的不同单体之间由α-1,4-糖苷键聚合而成,在形成支链处,会有α-1,6-糖苷键存在。另外,已有人工合成以α-1,3-糖苷键聚合的α-葡聚糖的报导。
xsd:nonNegativeInteger 5772

data from the linked data cloud