Algebraic geometry and analytic geometry
http://dbpedia.org/resource/Algebraic_geometry_and_analytic_geometry
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
rdf:langString
대수기하학에서 가가 정리(GAGA定理, 영어: GAGA theorems)는 복소수에 대한 사영 스킴이 해석적 다양체와 유사한 성질을 갖는다는 것을 보이는 일련의 정리들이다.
rdf:langString
数学において、代数幾何学と解析幾何学(フランス語: Géometrie Algébrique et Géométrie Analytique、略称: GAGA)は密接な関係にある。代数幾何学は代数多様体を研究するのに対して、解析幾何学は複素多様体やより一般的に多変数の(複素)解析函数のゼロ点で局所的に定義されたを扱う。これら2つの深い関係は、代数的なテクニックを解析空間へ適用したり、逆に解析的テクニックを代数多様体へ適用したりする上で応用されている。
rdf:langString
在數學中,代數幾何與解析幾何是兩個關係密切的學科。代數幾何研究代數簇,在複數域上,同時也能以複分析及微分幾何的技術研究代數簇。讓-皮埃爾·塞爾在1956年的同名論文中比較了這兩種觀點。在 SGA 第一冊附錄中,則以概形論的語言重新表述。
rdf:langString
rdf:langString
Algebraic geometry and analytic geometry
rdf:langString
가가 정리
rdf:langString
代数幾何学と解析幾何学
rdf:langString
代數幾何與解析幾何
xsd:integer
630505
xsd:integer
1117790246
rdf:langString
In mathematics, algebraic geometry and analytic geometry are two closely related subjects. While algebraic geometry studies algebraic varieties, analytic geometry deals with complex manifolds and the more general analytic spaces defined locally by the vanishing of analytic functions of several complex variables. The deep relation between these subjects has numerous applications in which algebraic techniques are applied to analytic spaces and analytic techniques to algebraic varieties.
rdf:langString
대수기하학에서 가가 정리(GAGA定理, 영어: GAGA theorems)는 복소수에 대한 사영 스킴이 해석적 다양체와 유사한 성질을 갖는다는 것을 보이는 일련의 정리들이다.
rdf:langString
数学において、代数幾何学と解析幾何学(フランス語: Géometrie Algébrique et Géométrie Analytique、略称: GAGA)は密接な関係にある。代数幾何学は代数多様体を研究するのに対して、解析幾何学は複素多様体やより一般的に多変数の(複素)解析函数のゼロ点で局所的に定義されたを扱う。これら2つの深い関係は、代数的なテクニックを解析空間へ適用したり、逆に解析的テクニックを代数多様体へ適用したりする上で応用されている。
rdf:langString
在數學中,代數幾何與解析幾何是兩個關係密切的學科。代數幾何研究代數簇,在複數域上,同時也能以複分析及微分幾何的技術研究代數簇。讓-皮埃爾·塞爾在1956年的同名論文中比較了這兩種觀點。在 SGA 第一冊附錄中,則以概形論的語言重新表述。
xsd:nonNegativeInteger
17077