Algebra homomorphism
http://dbpedia.org/resource/Algebra_homomorphism an entity of type: Abstraction100002137
In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
rdf:langString
Un omomorfismo tra due algebre sul campo K, A e B, è una funzione tale che per ogni k in K e x,y in A,
* F(kx) = kF(x)
* F(x + y) = F(x) + F(y)
* F(xy) = F(x)F(y) Se F è biettiva allora F è detta isomorfismo tra A e B.
rdf:langString
在A和B兩個K-多元環之間的同態是指一個函數,此函數能使得對所有在K內的k和在A內的x、y來說,
* F(kx) = kF(x)
* F(x + y) = F(x) + F(y)
* F(xy) = F(x)F(y) 若F是双射的,則F稱為是A和B之間的同構。
rdf:langString
rdf:langString
Algebra homomorphism
rdf:langString
Omomorfismo di algebre
rdf:langString
代數同態
xsd:integer
331969
xsd:integer
1014718316
rdf:langString
In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if A and B are algebras over a field (or commutative ring) K, it is a function such that for all k in K and x, y in A,
*
*
* The first two conditions say that F is a K-linear map (or K-module homomorphism if K is a commutative ring), and the last condition says that F is a (non-unital) ring homomorphism. If F admits an inverse homomorphism, or equivalently if it is bijective, F is said to be an isomorphism between A and B.
rdf:langString
Un omomorfismo tra due algebre sul campo K, A e B, è una funzione tale che per ogni k in K e x,y in A,
* F(kx) = kF(x)
* F(x + y) = F(x) + F(y)
* F(xy) = F(x)F(y) Se F è biettiva allora F è detta isomorfismo tra A e B.
rdf:langString
在A和B兩個K-多元環之間的同態是指一個函數,此函數能使得對所有在K內的k和在A內的x、y來說,
* F(kx) = kF(x)
* F(x + y) = F(x) + F(y)
* F(xy) = F(x)F(y) 若F是双射的,則F稱為是A和B之間的同構。
xsd:nonNegativeInteger
3374