Albert algebra
http://dbpedia.org/resource/Albert_algebra an entity of type: WikicatNon-associativeAlgebras
في الرياضيات, يكون جبر ألبرت هو ذات 27 بعد. سميت على اسم Abraham Adrian Albert, الذي يعد رائداً في دراسة الجبر اللا-تجميعي, و عادةً مايعمل على مستوى الأعداد الحقيقية. على مستوى الأعداد الحقيقية, هناك طريقة واحدة فقط مثل جبر جوردان Jordan algebra التماثل. يمكن أن تشاهد هذا النوع من الجبر كمجموعة مصفوفات 3×3 على مدى الأوكتونيونات في العمليات الثنائية. حيث أن تشير إلى مصفوفة التضاعف.
rdf:langString
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by Pascual Jordan, John von Neumann, and Eugene Wigner and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation
rdf:langString
rdf:langString
جبر ألبرت
rdf:langString
Albert algebra
xsd:integer
9153180
xsd:integer
1039500973
rdf:langString
Eugene
rdf:langString
Pascual
rdf:langString
John von
rdf:langString
Jordan
rdf:langString
Neumann
rdf:langString
Wigner
xsd:integer
1934
rdf:langString
في الرياضيات, يكون جبر ألبرت هو ذات 27 بعد. سميت على اسم Abraham Adrian Albert, الذي يعد رائداً في دراسة الجبر اللا-تجميعي, و عادةً مايعمل على مستوى الأعداد الحقيقية. على مستوى الأعداد الحقيقية, هناك طريقة واحدة فقط مثل جبر جوردان Jordan algebra التماثل. يمكن أن تشاهد هذا النوع من الجبر كمجموعة مصفوفات 3×3 على مدى الأوكتونيونات في العمليات الثنائية. حيث أن تشير إلى مصفوفة التضاعف.
rdf:langString
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by Pascual Jordan, John von Neumann, and Eugene Wigner and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation where denotes matrix multiplication. Another is defined the same way, but using split octonions instead of octonions. The final is constructed from the non-split octonions using a different standard involution. Over any algebraically closed field, there is just one Albert algebra, and its automorphism group G is the simple split group of type F4. (For example, the complexifications of the three Albert algebras over the real numbers are isomorphic Albert algebras over the complex numbers.) Because of this, for a general field F, the Albert algebras are classified by the Galois cohomology group H1(F,G). The Kantor–Koecher–Tits construction applied to an Albert algebra gives a form of the E7 Lie algebra. The split Albert algebra is used in a construction of a 56-dimensional structurable algebra whose automorphism group has identity component the simply-connected algebraic group of type E6. The space of cohomological invariants of Albert algebras a field F (of characteristic not 2) with coefficients in Z/2Z is a free module over the cohomology ring of F with a basis 1, f3, f5, of degrees 0, 3, 5. The cohomological invariants with 3-torsion coefficients have a basis 1, g3 of degrees 0, 3. The invariants f3 and g3 are the primary components of the Rost invariant.
rdf:langString
Pascual Jordan
rdf:langString
John von Neumann
rdf:langString
Eugene Wigner
xsd:nonNegativeInteger
6883