Albert algebra

http://dbpedia.org/resource/Albert_algebra an entity of type: WikicatNon-associativeAlgebras

في الرياضيات, يكون جبر ألبرت هو ذات 27 بعد. سميت على اسم Abraham Adrian Albert, الذي يعد رائداً في دراسة الجبر اللا-تجميعي, و عادةً مايعمل على مستوى الأعداد الحقيقية. على مستوى الأعداد الحقيقية, هناك طريقة واحدة فقط مثل جبر جوردان Jordan algebra التماثل. يمكن أن تشاهد هذا النوع من الجبر كمجموعة مصفوفات 3×3 على مدى الأوكتونيونات في العمليات الثنائية. حيث أن تشير إلى مصفوفة التضاعف. rdf:langString
In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by Pascual Jordan, John von Neumann, and Eugene Wigner and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation rdf:langString
rdf:langString جبر ألبرت
rdf:langString Albert algebra
xsd:integer 9153180
xsd:integer 1039500973
rdf:langString Eugene
rdf:langString Pascual
rdf:langString John von
rdf:langString Jordan
rdf:langString Neumann
rdf:langString Wigner
xsd:integer 1934
rdf:langString في الرياضيات, يكون جبر ألبرت هو ذات 27 بعد. سميت على اسم Abraham Adrian Albert, الذي يعد رائداً في دراسة الجبر اللا-تجميعي, و عادةً مايعمل على مستوى الأعداد الحقيقية. على مستوى الأعداد الحقيقية, هناك طريقة واحدة فقط مثل جبر جوردان Jordan algebra التماثل. يمكن أن تشاهد هذا النوع من الجبر كمجموعة مصفوفات 3×3 على مدى الأوكتونيونات في العمليات الثنائية. حيث أن تشير إلى مصفوفة التضاعف.
rdf:langString In mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by Pascual Jordan, John von Neumann, and Eugene Wigner and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation where denotes matrix multiplication. Another is defined the same way, but using split octonions instead of octonions. The final is constructed from the non-split octonions using a different standard involution. Over any algebraically closed field, there is just one Albert algebra, and its automorphism group G is the simple split group of type F4. (For example, the complexifications of the three Albert algebras over the real numbers are isomorphic Albert algebras over the complex numbers.) Because of this, for a general field F, the Albert algebras are classified by the Galois cohomology group H1(F,G). The Kantor–Koecher–Tits construction applied to an Albert algebra gives a form of the E7 Lie algebra. The split Albert algebra is used in a construction of a 56-dimensional structurable algebra whose automorphism group has identity component the simply-connected algebraic group of type E6. The space of cohomological invariants of Albert algebras a field F (of characteristic not 2) with coefficients in Z/2Z is a free module over the cohomology ring of F with a basis 1, f3, f5, of degrees 0, 3, 5. The cohomological invariants with 3-torsion coefficients have a basis 1, g3 of degrees 0, 3. The invariants f3 and g3 are the primary components of the Rost invariant.
rdf:langString Pascual Jordan
rdf:langString John von Neumann
rdf:langString Eugene Wigner
xsd:nonNegativeInteger 6883

data from the linked data cloud