Admissible ordinal
http://dbpedia.org/resource/Admissible_ordinal an entity of type: WikicatOrdinalNumbers
集合論において、順序数 α が許容順序数(きょようじゅんじょすう)であるとは、Lα が(すなわちの)であるときをいう。言い換えれば、α が許容順序数かつ Lα⊧Σ0-系であるときに α が許容されるという。 最初の2つの許容順序数は ω と ω1CK (最小の、チャーチ・クリーネ順序数とも呼ばれる)である。 任意の非可算な正則基数は許容順序数である。
rdf:langString
In set theory, an ordinal number α is an admissible ordinal if Lα is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, α is admissible when α is a limit ordinal and Lα ⊧ Σ0-collection. The term was coined by Richard Platek in 1966. The first two admissible ordinals are ω and (the least non-recursive ordinal, also called the Church–Kleene ordinal). Any regular uncountable cardinal is an admissible ordinal.
rdf:langString
rdf:langString
Admissible ordinal
rdf:langString
許容順序数
xsd:integer
4635859
xsd:integer
1111091526
rdf:langString
In set theory, an ordinal number α is an admissible ordinal if Lα is an admissible set (that is, a transitive model of Kripke–Platek set theory); in other words, α is admissible when α is a limit ordinal and Lα ⊧ Σ0-collection. The term was coined by Richard Platek in 1966. The first two admissible ordinals are ω and (the least non-recursive ordinal, also called the Church–Kleene ordinal). Any regular uncountable cardinal is an admissible ordinal. By a theorem of Sacks, the countable admissible ordinals are exactly those constructed in a manner similar to the Church–Kleene ordinal, but for Turing machines with oracles. One sometimes writes for the -th ordinal that is either admissible or a limit of admissibles; an ordinal that is both is called recursively inaccessible. There exists a theory of large ordinals in this manner that is highly parallel to that of (small) large cardinals (one can define recursively Mahlo ordinals, for example). But all these ordinals are still countable. Therefore, admissible ordinals seem to be the recursive analogue of regular cardinal numbers. Notice that α is an admissible ordinal if and only if α is a limit ordinal and there does not exist a γ < α for which there is a Σ1(Lα) mapping from γ onto α. If M is a standard model of KP, then the set of ordinals in M is an admissible ordinal.
rdf:langString
集合論において、順序数 α が許容順序数(きょようじゅんじょすう)であるとは、Lα が(すなわちの)であるときをいう。言い換えれば、α が許容順序数かつ Lα⊧Σ0-系であるときに α が許容されるという。 最初の2つの許容順序数は ω と ω1CK (最小の、チャーチ・クリーネ順序数とも呼ばれる)である。 任意の非可算な正則基数は許容順序数である。
xsd:nonNegativeInteger
4043