Additive model

http://dbpedia.org/resource/Additive_model an entity of type: Software

In der Statistik ist ein additives Modell (AM) ein nichtparametrisches Regressionsmodell. Es wurde durch und Werner Stuetzle (1981) vorgeschlagen. Das additive Modell verwendet einen eindimensionalen Glätter, um eine eingeschränkte Klasse von nichtparametrischen Regressionsmodellen zu bilden. Daher ist das Modell weniger durch den Fluch der Dimensionalität betroffen als beispielsweise ein p-dimensionaler Glätter. Das AM ist flexibler als gewöhnliche lineare Regressionsmodelle. Probleme, die beim additiven Modell auftreten können, sind Überanpassung und Multikollinearität. rdf:langString
In statistics, an additive model (AM) is a nonparametric regression method. It was suggested by Jerome H. Friedman and Werner Stuetzle (1981) and is an essential part of the ACE algorithm. The AM uses a one-dimensional smoother to build a restricted class of nonparametric regression models. Because of this, it is less affected by the curse of dimensionality than e.g. a p-dimensional smoother. Furthermore, the AM is more flexible than a standard linear model, while being more interpretable than a general regression surface at the cost of approximation errors. Problems with AM, like many other machine learning methods, include model selection, overfitting, and multicollinearity. rdf:langString
rdf:langString Additives Modell
rdf:langString Additive model
xsd:integer 20964272
xsd:integer 1078143924
rdf:langString In der Statistik ist ein additives Modell (AM) ein nichtparametrisches Regressionsmodell. Es wurde durch und Werner Stuetzle (1981) vorgeschlagen. Das additive Modell verwendet einen eindimensionalen Glätter, um eine eingeschränkte Klasse von nichtparametrischen Regressionsmodellen zu bilden. Daher ist das Modell weniger durch den Fluch der Dimensionalität betroffen als beispielsweise ein p-dimensionaler Glätter. Das AM ist flexibler als gewöhnliche lineare Regressionsmodelle. Probleme, die beim additiven Modell auftreten können, sind Überanpassung und Multikollinearität.
rdf:langString In statistics, an additive model (AM) is a nonparametric regression method. It was suggested by Jerome H. Friedman and Werner Stuetzle (1981) and is an essential part of the ACE algorithm. The AM uses a one-dimensional smoother to build a restricted class of nonparametric regression models. Because of this, it is less affected by the curse of dimensionality than e.g. a p-dimensional smoother. Furthermore, the AM is more flexible than a standard linear model, while being more interpretable than a general regression surface at the cost of approximation errors. Problems with AM, like many other machine learning methods, include model selection, overfitting, and multicollinearity.
xsd:nonNegativeInteger 2612

data from the linked data cloud