Acyclic space

http://dbpedia.org/resource/Acyclic_space an entity of type: Abstraction100002137

In mathematics, an acyclic space is a nonempty topological space X in which cycles are always boundaries, in the sense of homology theory. This implies that integral homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point. In other words, using the idea of reduced homology, rdf:langString
rdf:langString Acyclic space
xsd:integer 10355069
xsd:integer 1078346090
rdf:langString p/a110270
rdf:langString Acyclic groups
rdf:langString In mathematics, an acyclic space is a nonempty topological space X in which cycles are always boundaries, in the sense of homology theory. This implies that integral homology groups in all dimensions of X are isomorphic to the corresponding homology groups of a point. In other words, using the idea of reduced homology, It is common to consider such a space as a nonempty space without "holes"; for example, a circle or a sphere is not acyclic but a discor a ball is acyclic. This condition however is weaker than asking that every closed loop in the space would bound a disc in the space, all we ask is that any closed loop—and higher dimensional analogue thereof—would bound something like a "two-dimensional surface." The condition of acyclicity on a space X implies, for example, for nice spaces—say, simplicial complexes—that any continuous map of X to the circle or to the higher spheres is null-homotopic. If a space X is contractible, then it is also acyclic, by the homotopy invariance of homology. The converse is not true, in general. Nevertheless, if X is an acyclic CW complex, and if the fundamental group of X is trivial, then X is a contractible space, as follows from the Whitehead theorem and the Hurewicz theorem.
xsd:nonNegativeInteger 4137

data from the linked data cloud