Active matter
http://dbpedia.org/resource/Active_matter
Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces. Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents. Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to syntheti
rdf:langString
La materia activa está compuesta de un gran número de «agentes activos», cada uno de los cuales consume energía para moverse o para ejercer fuerzas mecánicas. Debido al consumo de energía, estos sistemas están intrínsecamente fuera de equilibrio térmico. Ejemplos de materia activa son los bancos de peces, bandadas de aves, bacterias, partículas autopropulsadas artificiales, y la auto-organización de los bio-polímeros tales como los microtúbulos y la actina, siendo parte ambos del citoesqueleto de las células vivas. La mayoría de los ejemplos de materia activa son de origen biológico; sin embargo, una gran cantidad del trabajo experimental está dedicado a los sistemas sintéticos. La materia activa es un campo relativamente nuevo en física de la materia blanda: el modelo más ampliamente es
rdf:langString
In fisica statistica per materia attiva si intende un sistema complesso composto da un gran numero di elementi attivi, ciascuno dei quali consuma energia per muoversi o per esercitare forze meccaniche. Tali sistemi sono intrinsecamente fuori dall'equilibrio termodinamico. A differenza dei sistemi termodinamici che si rilassano verso l'equilibrio e dei sistemi con condizioni al contorno che impongono flussi costanti, i sistemi di materia attiva rompono la simmetria di inversione temporale perché l'energia viene continuamente dissipata dai singoli costituenti. La maggior parte degli esempi di materia attiva sono di origine biologica e spaziano su tutte le scale dei viventi, dai batteri e dai biopolimeri auto-organizzanti quali microtubuli e actina (entrambi fanno parte del citoscheletro dell
rdf:langString
rdf:langString
Active matter
rdf:langString
Materia activa
rdf:langString
Materia attiva
xsd:integer
26053735
xsd:integer
1121753421
rdf:langString
Active matter is matter composed of large numbers of active "agents", each of which consumes energy in order to move or to exert mechanical forces. Such systems are intrinsically out of thermal equilibrium. Unlike thermal systems relaxing towards equilibrium and systems with boundary conditions imposing steady currents, active matter systems break time reversal symmetry because energy is being continually dissipated by the individual constituents. Most examples of active matter are biological in origin and span all the scales of the living, from bacteria and self-organising bio-polymers such as microtubules and actin (both of which are part of the cytoskeleton of living cells), to schools of fish and flocks of birds. However, a great deal of current experimental work is devoted to synthetic systems such as artificial self-propelled particles. Active matter is a relatively new material classification in soft matter: the most extensively studied model, the Vicsek model, dates from 1995. Research in active matter combines analytical techniques, numerical simulations and experiments. Notable analytical approaches include hydrodynamics, kinetic theory, and non-equilibrium statistical physics. Numerical studies mainly involve self-propelled-particles models, making use of agent-based models such as molecular dynamics algorithms or lattice-gas models, as well as computational studies of hydrodynamic equations of active fluids. Experiments on biological systems extend over a wide range of scales, including animal groups (e.g., bird flocks, mammalian herds, fish schools and insect swarms), bacterial colonies, cellular tissues (e.g. epithelial tissue layers, cancer growth and embryogenesis), cytoskeleton components (e.g., in vitro motility assays, actin-myosin networks and molecular-motor driven filaments). Experiments on synthetic systems include self-propelled colloids (e.g., phoretically propelled particles), driven granular matter (e.g. vibrated monolayers), swarming robots and Quinke rotators. Concepts in Active matter
* Active gels
* Dense active matter
* Collective motion
* Collective animal behavior
* Collective cell migration
* Motility induced phase separation
* Schooling, flocking and swarming
* Collective motion
* Active stress
* Disordered hyperuniformity Active matter systems
* Biological tissues
* Subcellular and cell mechanics
* Crowd behaviour
* Self-propelled particles and colloids
rdf:langString
La materia activa está compuesta de un gran número de «agentes activos», cada uno de los cuales consume energía para moverse o para ejercer fuerzas mecánicas. Debido al consumo de energía, estos sistemas están intrínsecamente fuera de equilibrio térmico. Ejemplos de materia activa son los bancos de peces, bandadas de aves, bacterias, partículas autopropulsadas artificiales, y la auto-organización de los bio-polímeros tales como los microtúbulos y la actina, siendo parte ambos del citoesqueleto de las células vivas. La mayoría de los ejemplos de materia activa son de origen biológico; sin embargo, una gran cantidad del trabajo experimental está dedicado a los sistemas sintéticos. La materia activa es un campo relativamente nuevo en física de la materia blanda: el modelo más ampliamente estudiado , el modelo de Vicsek, data de 1995. La investigación en materia activa combina técnicas de análisis, simulaciones numéricas y los experimentos. Notable enfoques analíticos incluyen la hidrodinámica, la teoría cinética, y la física estadística del no-equilibrio. Estudios numéricos involucran principalmente a modelos de partículas autopropulsadas, haciendo uso de técnicas basadas en agentes y de algoritmos de dinámica molecular. Los experimentos en los sistemas biológicos se extienden sobre un amplio rango de escalas, incluyendo grupos de animales (por ejemplo, bandadas, manadas de mamíferos, bancos de peces y enjambres de insectos), colonias de bacterias, tejido celular (por ejemplo, el tejido epitelial de capas, el crecimiento del cáncer y la embriogénesis), los componentes del citoesqueleto (por ejemplo, los ensayos de la motilidad in vitro , de las redes de actina-miosina y filamentos impulsados por motores moleculares). Experimentos en sistemas sintéticos incluyen la auto-propulsión de los coloides (por ejemplo, partículas impulsadas foréticamente), materia granular impulsada (por ejemplo, vibrado de monocapas), enjambres de robots y rotadores Quinke. Conceptos en materia activa
* Geles activos
* Materia activa densa
* Movimiento colectivo
* Comportamiento colectivo de los animales
* La motilidad inducida por la separación de la fase
* Agregaciones, cardúmenes y enjambres Sistemas de materia activa
* Los tejidos biológicos
* Mecánica celular y sub-celular
* El comportamiento de las aglomeraciones
* La auto-propulsión de partículas y coloides
rdf:langString
In fisica statistica per materia attiva si intende un sistema complesso composto da un gran numero di elementi attivi, ciascuno dei quali consuma energia per muoversi o per esercitare forze meccaniche. Tali sistemi sono intrinsecamente fuori dall'equilibrio termodinamico. A differenza dei sistemi termodinamici che si rilassano verso l'equilibrio e dei sistemi con condizioni al contorno che impongono flussi costanti, i sistemi di materia attiva rompono la simmetria di inversione temporale perché l'energia viene continuamente dissipata dai singoli costituenti. La maggior parte degli esempi di materia attiva sono di origine biologica e spaziano su tutte le scale dei viventi, dai batteri e dai biopolimeri auto-organizzanti quali microtubuli e actina (entrambi fanno parte del citoscheletro delle cellule viventi), ai banchi di pesci e agli stormi di uccelli. Inoltre, gran parte del lavoro sperimentale attuale è dedicato a sistemi sintetici come le particelle semoventi artificiali. La materia attiva è una concetto relativamente nuovo all'interno del campo della materia soffice: il modello più studiato, il modello di Vicsek, risale al 1995. La ricerca sulla materia attiva combina tecniche analitiche, simulazioni numeriche ed esperimenti. Gli approcci teorici principali includono l'idrodinamica, la teoria cinetica e la meccanica statistica del non equilibrio. Gli studi numerici coinvolgono principalmente modelli di particelle semoventi, modelli basati su agenti come algoritmi di dinamica molecolare o modelli di gas reticolare, così come simulazioni computazionali di equazioni idrodinamiche di fluidi attivi. Gli esperimenti sui sistemi biologici si estendono su un'ampia gamma di scale, inclusi gruppi di persone e animali (ad esempio stormi di uccelli, branchi di mammiferi, banchi di pesci e sciami di insetti), colonie di micronuotatori come batteri, alghe unicellulari o spermatozoi, tessuti cellulari (ad esempio strati di tessuto epiteliale, crescita tumorale ed embriogenesi), componenti del citoscheletro (come reti actina-miosina o filamenti guidati da motori molecolari). Gli esperimenti sui sistemi artificiali includono colloidi semoventi (ad es. particelle a propulsione foretica), materia granulare guidata (ad esempio monostrati fatti vibrare), robot che sciamano e rotatori Quinke.
xsd:nonNegativeInteger
10473