Active learning (machine learning)
http://dbpedia.org/resource/Active_learning_(machine_learning) an entity of type: SupremeCourtOfTheUnitedStatesCase
L’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises.
rdf:langString
能動学習(のうどうがくしゅう、英: active learning)は、機械学習の学習手法の一種であり、学習アルゴリズムがそのユーザや他の情報源に対話的に問い合わせることで、学習に有用なデータを優先して選択・生成し、ラベル付けを行うものである。能動学習の詳細な問題設定は多岐に渡り、プールベース能動学習などがある。
rdf:langString
Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs. In statistics literature, it is sometimes also called optimal experimental design. The information source is also called teacher or oracle. Large-scale active learning projects may benefit from crowdsourcing frameworks such as Amazon Mechanical Turk that include many humans in the active learning loop.
rdf:langString
rdf:langString
Active learning (machine learning)
rdf:langString
Apprentissage actif
rdf:langString
能動学習
xsd:integer
28801798
xsd:integer
1123958510
rdf:langString
Active learning is a special case of machine learning in which a learning algorithm can interactively query a user (or some other information source) to label new data points with the desired outputs. In statistics literature, it is sometimes also called optimal experimental design. The information source is also called teacher or oracle. There are situations in which unlabeled data is abundant but manual labeling is expensive. In such a scenario, learning algorithms can actively query the user/teacher for labels. This type of iterative supervised learning is called active learning. Since the learner chooses the examples, the number of examples to learn a concept can often be much lower than the number required in normal supervised learning. With this approach, there is a risk that the algorithm is overwhelmed by uninformative examples. Recent developments are dedicated to multi-label active learning, hybrid active learning and active learning in a single-pass (on-line) context, combining concepts from the field of machine learning (e.g. conflict and ignorance) with adaptive, incremental learning policies in the field of online machine learning. Large-scale active learning projects may benefit from crowdsourcing frameworks such as Amazon Mechanical Turk that include many humans in the active learning loop.
rdf:langString
L’apprentissage actif est un modèle d’apprentissage semi-supervisé où un oracle intervient au cours du processus. Plus précisément, contrairement au cadre classique où les données sont connues et imposées, en apprentissage actif, c'est l'algorithme d'apprentissage qui demande des informations pour des données précises.
rdf:langString
能動学習(のうどうがくしゅう、英: active learning)は、機械学習の学習手法の一種であり、学習アルゴリズムがそのユーザや他の情報源に対話的に問い合わせることで、学習に有用なデータを優先して選択・生成し、ラベル付けを行うものである。能動学習の詳細な問題設定は多岐に渡り、プールベース能動学習などがある。
xsd:nonNegativeInteger
13034