Absolute Galois group
http://dbpedia.org/resource/Absolute_Galois_group an entity of type: Band
Die absolute Galoisgruppe eines Körpers ist die Galoisgruppe, welche zum separablen Abschluss gehört. Sie ist eindeutig bis auf Isomorphie. Im Allgemeinen ist die Körpererweiterung von unendlichem Grad, weshalb der Hauptsatz der Galoistheorie als solcher nicht mehr anwendbar ist. Das Studium von verspricht Information über sämtliche endlichen galoisschen Körpererweiterungen , insbesondere Hinweise zur Lösung des Umkehrproblems der Galoistheorie.
rdf:langString
In mathematics, the absolute Galois group GK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.)
rdf:langString
En matemática, el grupo absoluto de Galois GK de un cuerpo K es el grupo de Galois de Ksep sobre K, donde Ksep es una clausura separable de K. Alternativamente es el grupo de todos los automorfismos de la clausura algebraica de K que fija K. El grupo absoluto de Galois es único salvo isomorfismo. Es un grupo profinito. (Cuando K es un cuerpo perfecto, Ksep es el mismo que una clausura algebraica Kalg de K. Esto se cumple, por ejemplo, para K de característica cero, o K si es cuerpo finito.)
rdf:langString
体 K の絶対ガロア群 GK(ぜったいガロアぐん、英: absolute Galois group)とは、数学の用語で、K の分離閉包 Ksep の K 上のガロア群のことである。あるいは、K の代数的閉包の自己同型であって K を固定するもの全てからなる群と言っても同じことである。絶対ガロア群は副有限群であり、内部自己同型による違いを除いて well-defined である。 K が完全体であれば Ksep は K の代数的閉包 Kalg と等しい。K が標数0の場合や、K が有限体の場合がこれにあたる。
rdf:langString
Il gruppo di Galois assoluto di un campo è per definizione il gruppo di Galois di su , dove denota la chiusura separabile di . In alternativa può essere definito come il gruppo di tutti gli automorfismi di che fissano . Si noti che se è un campo perfetto (come nel caso in cui ha caratteristica zero o è un campo finito), allora coincide con la chiusura algebrica di .
rdf:langString
Абсолютная группа Галуа поля — группа Галуа над , где — . Также определяется как группа всех автоморфизмов алгебраического замыкания поля , которые оставляют неподвижным. Абсолютная группа Галуа уникальна с точностью до изоморфизма. Является проконечной группой. (Если — совершенное поле, совпадает с алгебраическим замыканием поля . Например, это верно для полей характеристики 0 и конечных полей.)
rdf:langString
Inom matematiken är den absoluta Galoisgruppen GK av en kropp K Galoisgruppen av Ksep över K, där Ksep är ett av K. Alternativt är den gruppen av alla automorfier av det av K som fixerar K. Den absoluta Galoisgruppen är unik isomorfi. Den är en . Då K är en , är Ksep samma som det Kalg av K. Detta gäller t.ex. för K med karakteristik noll, eller då K är en ändlig kropp.
rdf:langString
在数学中,一个 域 K 的 绝对伽罗瓦群 GK ,是 Ksep 在 K 上的 伽罗瓦群。其中,Ksep 是 K 的 可分闭包。当 K 是 ,即 K 的特征为0,或者 K 是一个 有限域 的时候,Ksep=Ka,即 K的 可分闭包 和它的 代数闭包 相等。这时候 GK 是所有 Ka/k 的自同构的群。绝对伽罗瓦群和所有伽罗瓦群一样,是
rdf:langString
En mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres.
rdf:langString
rdf:langString
Absolute Galoisgruppe
rdf:langString
Absolute Galois group
rdf:langString
Grupo absoluto de Galois
rdf:langString
Groupe de Galois absolu
rdf:langString
Gruppo di Galois assoluto
rdf:langString
絶対ガロア群
rdf:langString
Абсолютная группа Галуа
rdf:langString
Absolut Galoisgrupp
rdf:langString
绝对伽罗瓦群
xsd:integer
2996781
xsd:integer
1012592842
rdf:langString
Die absolute Galoisgruppe eines Körpers ist die Galoisgruppe, welche zum separablen Abschluss gehört. Sie ist eindeutig bis auf Isomorphie. Im Allgemeinen ist die Körpererweiterung von unendlichem Grad, weshalb der Hauptsatz der Galoistheorie als solcher nicht mehr anwendbar ist. Das Studium von verspricht Information über sämtliche endlichen galoisschen Körpererweiterungen , insbesondere Hinweise zur Lösung des Umkehrproblems der Galoistheorie.
rdf:langString
In mathematics, the absolute Galois group GK of a field K is the Galois group of Ksep over K, where Ksep is a separable closure of K. Alternatively it is the group of all automorphisms of the algebraic closure of K that fix K. The absolute Galois group is well-defined up to inner automorphism. It is a profinite group. (When K is a perfect field, Ksep is the same as an algebraic closure Kalg of K. This holds e.g. for K of characteristic zero, or K a finite field.)
rdf:langString
En mathématiques, le groupe de Galois absolu d'un corps commutatif K est le groupe de Galois d'une clôture séparable (extension algébrique séparable maximale, nécessairement normale donc galoisienne) Ksep du corps K. Dans le cas d'un corps parfait (et donc en particulier en caractéristique nulle), une clôture séparable coïncide avec une clôture algébrique. La compréhension du groupe de Galois absolu du corps des nombres rationnels est un problème important en théorie algébrique des nombres. Ce groupe est unique à isomorphisme près car les clôtures séparables de sont -isomorphes entre elles. Il a une structure naturelle de groupe profini. Une autre notion liée est celle de pro-p-groupe de Galois absolu, pour p un nombre premier. Il s'agit du plus grand (en)-quotient du groupe de Galois absolu, ou encore, par la correspondance de Galois, du groupe de Galois de la pro-p-clôture séparable.
rdf:langString
En matemática, el grupo absoluto de Galois GK de un cuerpo K es el grupo de Galois de Ksep sobre K, donde Ksep es una clausura separable de K. Alternativamente es el grupo de todos los automorfismos de la clausura algebraica de K que fija K. El grupo absoluto de Galois es único salvo isomorfismo. Es un grupo profinito. (Cuando K es un cuerpo perfecto, Ksep es el mismo que una clausura algebraica Kalg de K. Esto se cumple, por ejemplo, para K de característica cero, o K si es cuerpo finito.)
rdf:langString
体 K の絶対ガロア群 GK(ぜったいガロアぐん、英: absolute Galois group)とは、数学の用語で、K の分離閉包 Ksep の K 上のガロア群のことである。あるいは、K の代数的閉包の自己同型であって K を固定するもの全てからなる群と言っても同じことである。絶対ガロア群は副有限群であり、内部自己同型による違いを除いて well-defined である。 K が完全体であれば Ksep は K の代数的閉包 Kalg と等しい。K が標数0の場合や、K が有限体の場合がこれにあたる。
rdf:langString
Il gruppo di Galois assoluto di un campo è per definizione il gruppo di Galois di su , dove denota la chiusura separabile di . In alternativa può essere definito come il gruppo di tutti gli automorfismi di che fissano . Si noti che se è un campo perfetto (come nel caso in cui ha caratteristica zero o è un campo finito), allora coincide con la chiusura algebrica di .
rdf:langString
Абсолютная группа Галуа поля — группа Галуа над , где — . Также определяется как группа всех автоморфизмов алгебраического замыкания поля , которые оставляют неподвижным. Абсолютная группа Галуа уникальна с точностью до изоморфизма. Является проконечной группой. (Если — совершенное поле, совпадает с алгебраическим замыканием поля . Например, это верно для полей характеристики 0 и конечных полей.)
rdf:langString
Inom matematiken är den absoluta Galoisgruppen GK av en kropp K Galoisgruppen av Ksep över K, där Ksep är ett av K. Alternativt är den gruppen av alla automorfier av det av K som fixerar K. Den absoluta Galoisgruppen är unik isomorfi. Den är en . Då K är en , är Ksep samma som det Kalg av K. Detta gäller t.ex. för K med karakteristik noll, eller då K är en ändlig kropp.
rdf:langString
在数学中,一个 域 K 的 绝对伽罗瓦群 GK ,是 Ksep 在 K 上的 伽罗瓦群。其中,Ksep 是 K 的 可分闭包。当 K 是 ,即 K 的特征为0,或者 K 是一个 有限域 的时候,Ksep=Ka,即 K的 可分闭包 和它的 代数闭包 相等。这时候 GK 是所有 Ka/k 的自同构的群。绝对伽罗瓦群和所有伽罗瓦群一样,是
xsd:nonNegativeInteger
6419