Abelian von Neumann algebra

http://dbpedia.org/resource/Abelian_von_Neumann_algebra an entity of type: WikicatVonNeumannAlgebras

Abelsche Von-Neumann-Algebren sind im mathematischen Teilgebiet der Funktionalanalysis betrachtete Von-Neumann-Algebren, deren Multiplikation kommutativ ist. rdf:langString
Em análise funcional, uma álgebra abeliana de von Neumann é uma álgebra de von Neumann de operadores sobre um espaço de Hilbert na qual todos os elementos comutam. rdf:langString
In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants. rdf:langString
rdf:langString Abelsche Von-Neumann-Algebra
rdf:langString Abelian von Neumann algebra
rdf:langString Álgebra abeliana de von Neumann
xsd:integer 1496379
xsd:integer 1068318177
rdf:langString In functional analysis, an abelian von Neumann algebra is a von Neumann algebra of operators on a Hilbert space in which all elements commute. The prototypical example of an abelian von Neumann algebra is the algebra L∞(X, μ) for μ a σ-finite measure on X realized as an algebra of operators on the Hilbert space L2(X, μ) as follows: Each f ∈ L∞(X, μ) is identified with the multiplication operator Of particular importance are the abelian von Neumann algebras on separable Hilbert spaces, particularly since they are completely classifiable by simple invariants. Though there is a theory for von Neumann algebras on non-separable Hilbert spaces (and indeed much of the general theory still holds in that case) the theory is considerably simpler for algebras on separable spaces and most applications to other areas of mathematics or physics only use separable Hilbert spaces. Note that if the measure spaces (X, μ) is a (that is X − N is a standard Borel space for some null set N and μ is a σ-finite measure) then L2(X, μ) is separable.
rdf:langString Abelsche Von-Neumann-Algebren sind im mathematischen Teilgebiet der Funktionalanalysis betrachtete Von-Neumann-Algebren, deren Multiplikation kommutativ ist.
rdf:langString Em análise funcional, uma álgebra abeliana de von Neumann é uma álgebra de von Neumann de operadores sobre um espaço de Hilbert na qual todos os elementos comutam.
xsd:nonNegativeInteger 9834

data from the linked data cloud