22 equal temperament
http://dbpedia.org/resource/22_equal_temperament an entity of type: Abstraction100002137
In music, 22 equal temperament, called 22-TET, 22-EDO, or 22-ET, is the tempered scale derived by dividing the octave into 22 equal steps (equal frequency ratios). Each step represents a frequency ratio of 22√2, or 54.55 cents. Finally, 22-ET has a good approximation of the 11th harmonic, and is in fact the smallest equal temperament to be consistent in the 11-limit. The net effect is that 22-ET allows (and to some extent even forces) the exploration of new musical territory, while still having excellent approximations of common practice consonances.
rdf:langString
In de muziek is de 22-toonsverdeling, de zogenaamde 22-tet, 22-edo of 22-et, de getempereerde schaal afgeleid door de verdeling van het octaaf in 22 gelijke intervallen met elk een frequentieverhouding van 21/22 of 54,55 cent ( (info / uitleg)).
rdf:langString
rdf:langString
22 equal temperament
rdf:langString
22-toonsverdeling
xsd:integer
3604034
xsd:integer
1070819859
rdf:langString
In music, 22 equal temperament, called 22-TET, 22-EDO, or 22-ET, is the tempered scale derived by dividing the octave into 22 equal steps (equal frequency ratios). Each step represents a frequency ratio of 22√2, or 54.55 cents. When composing with 22-ET, one needs to take into account a variety of considerations. Considering the 5-limit, there is a difference between 3 fifths and the sum of 1 fourth + 1 major third. It means that, starting from C, there are two A's - one 16 steps and one 17 steps away. There is also a difference between a major tone and a minor tone. In C major, the second note (D) will be 4 steps away. However, in A minor, where A is 6 steps below C, the fourth note (D) will be 9 steps above A, so 3 steps above C. So when switching from C major to A minor, one need to slightly change the note D. These discrepancies arise because, unlike 12-ET, 22-ET does not temper out the syntonic comma of 81/80, and in fact exaggerates its size by mapping it to one step. Extending 22-ET to the 7-limit, we find the septimal minor seventh (7/4) can be distinguished from the sum of a fifth (3/2) and a minor third (6/5). Also the septimal subminor third (7/6) is different from the minor third (6/5). This mapping tempers out the septimal comma of 64/63, which allows 22-ET to function as a "Superpythagorean" system where four stacked fifths are equated with the septimal major third (9/7) rather than the usual pental third of 5/4. This system is a "mirror image" of septimal meantone in many ways. Instead of tempering the fifth narrow so that intervals of 5 are simple while intervals of 7 are complex, the fifth is tempered wide so that intervals of 7 are simple while intervals of 5 are complex. The enharmonic structure is also reversed: sharps are sharper than flats, similar to Pythagorean tuning, but to a greater degree. Finally, 22-ET has a good approximation of the 11th harmonic, and is in fact the smallest equal temperament to be consistent in the 11-limit. The net effect is that 22-ET allows (and to some extent even forces) the exploration of new musical territory, while still having excellent approximations of common practice consonances.
rdf:langString
In de muziek is de 22-toonsverdeling, de zogenaamde 22-tet, 22-edo of 22-et, de getempereerde schaal afgeleid door de verdeling van het octaaf in 22 gelijke intervallen met elk een frequentieverhouding van 21/22 of 54,55 cent ( (info / uitleg)). Het idee om het octaaf te verdelen in 22 gelijke delen lijkt te zijn ontstaan bij de 19e-eeuwse muziektheoreticus R.H.M. Bosanquet. Geïnspireerd door de verdeling van het octaaf in 22 ongelijke delen in de muziektheorie van India, merkte Bosanquet op dat het met een dergelijke verdeling mogelijk was een stemming met limiet 5 met aanvaardbare nauwkeurigheid te verkrijgen. Hierin werd hij in de 20e eeuw gevolgd door theoreticus José Würschmidt, die deze stemming opmerkte als volgende mogelijke stap na de 19-toonsverdeling. Ook J. Murray Barbour volgde Bosanquet ook in zijn overzicht van stemmingen, Tuning and Temperament. Een hedendaagse voorstander van de 22-toonsverdeling is onder andere muziektheoreticus Paul Erlich.
xsd:nonNegativeInteger
16809